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ABSTRACT

The saturation of Moore’s Law has stalled the improvement in performance
and energy efficiency obtained with conventional homogeneous proces-
sors over technology nodes. Homogeneous processors are also not able
to cater to the contrasting performance and energy requirements from
different applications, leading to the rise of heterogeneous computing
architectures. While heterogeneous processors provide programming flex-
ibility, there is still a steep performance and energy-efficiency gap when
compared to special-purpose solutions (for example: GPUs, DSPs and
hardware accelerators). However, combining all kinds of processing ele-
ments in a single chip leads to a severe penalty in design cost, chip area and
poor utilization at run-time. To address all the above challenges, domain-
specific judiciously combine processing elements such general-purpose
cores, special-purpose cores and hardware accelerators to maximize the
energy efficiency of applications in a particular domain, and also provide
programming flexibility to execute applications from other domains. The
major challenge in DSSoCs is to optimally utilize these processing elements
at run-time to exploit the potential of the diverse and energy-efficient com-
pute elements on chip. Mapping tasks to the processing elements (task
scheduling) and controlling their voltage and frequencies form two key
aspects of resource management in DSSoCs.

To this end, we propose an imitation learning scheduler that approxi-
mates the performance of optimal /near-optimal schedulers with negligible
run-time overheads, and an imitation learning based power management
policy to determine the optimal voltage and frequency levels at run-time
while also satisfying soft deadline requirements. Our imitation learning
based scheduling policy achieves performance that is within 1% of an
Oracle for multiple optimization objectives using a decision tree classifier.
Furthermore, we optimize the execution of a decision tree classifier in both
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software and hardware to achieve latencies of less than 50 nanoseconds for
decision trees of up to depth 12. Finally, evaluating the performance and
functional correctness of a complex DSSoC with such diverse processing
elements is critical to avoid the exorbitant costs of post-silicon failures
and bugs. Therefore, we design a FPGA based emulation framework that
integrates Arm cores, hardware accelerators, caches and interconnects to
validate the functionality and performance of the DSSoC, perform rapid
and realistic design space exploration, evaluate scheduling algorithms
and enable early software, firmware and driver development.



1 INTRODUCTION

The improvements in integrated circuit performance, power and energy-
efficiency over process nodes have significantly slowed down, thereby
indicating the end of Moore’s Law [95, 36]. In addition, the end of Den-
nard scaling has failed our estimates of power and performance from
the next generation circuits [31]. While these two aspects have been in-
strumental in improving energy efficiency over the years, they are no
more sufficient to obtain the expected gains. Although circuits experi-
enced an increase in the operating frequencies to compensate for the gap
in performance, the cubic dependency of power with the frequency in-
creased the power consumption to an extent that heat dissipation became
a critical challenge, a phenomenon popularly referred to as the "Power
Wall" [37, 103]. Chip architects then turned towards instruction-level par-
allelism techniques — such as processor pipelining, prefetching, branch
prediction, superscalar execution, out-of-order execution — in the microar-
chitecture of general-purpose processors under power and temperature
constraints [44]. However, all these techniques saturated and provided
only marginal benefits in performance, thereby leaving a substantial scope
for improvement.

The rise of multicore architectures effectively circumvented the power
wall by integrating multiple identical cores onto the same die to provide
higher computational power under similar area budgets [33, 43]. While
marginal increase in frequencies led to significant increase in area and
power, multiple cores on chip provided ideally double the computation
power at moderate frequencies, thereby allowing for drastic improvements
in energy-efficiency [34]. Processors began to experience contrasting ap-
plication requirements as they were exploited to execute multiple applica-
tions simultaneously. For instance, on the one hand, internet browsing and

e-mail applications require low computational power. On the other hand,
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Figure 1.1: Trends in energy-efficiency and design effort of CPU, GPU,
FPGA and special-purpose ASIC implementations in literature.

video games, augmented/virtual reality applications and multimedia ap-
plications demand tremendous computational power to perform wireless
communications, video and audio processing, and other computations
simultaneously. Homogeneous multicore processors tradeoff performance
with power consumption, and vice-versa, and hence cannot satisfy both
requirements together. To this end, heterogeneous multiprocessor archi-
tectures addressed this problem by integrating low-power energy-efficient
cores and high-performance cores [73, 39]. The heterogeneous cores cater
to the contrasting requirements of applications, i.e., the energy-efficient
cores service the simple applications such as email and internet brows-
ing, and the high-performance cores provide the computational power
required for multimedia-like applications. While heterogeneous architec-
tures were primarily introduced in embedded system processors, they
are extensively used in most processing systems such as mobile phones,
laptops, desktops and even servers[12, 39, 78, 84].

Heterogeneous multiprocessor systems-on-chip (MPSoCs) solved sev-
eral challenges to improve performance and energy-efficiency over prior
techniques and computing architectures. However, they still suffered a
substantial gap with respect to special-purpose solutions. For example,
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Figure 1.2: DSSoCs combine the programmability and flexibility benefits of
CPUs and GPUs, and the energy-efficiency of FPGAs and special-purpose
ASICs.

a special-purpose ASIC for software-defined radio applications such as
3GPP-LTE achieves 216 x better area-time-energy product when compared
to an equivalent RISC-V processor implementation [70]. However, the
energy-efficiency of specialized solutions is achieved at the cost of high de-
sign time. Indeed, Figure 1.2(a) shows the energy-efficiency of CPU, GPU,
FPGA and ASIC implementations of several applications in literature. CPU
implementations requiring the least design effort, also provide the lowest
energy efficiency. GPUs and FPGAs improve the energy-efficiency by ex-
ploiting the benefits of single-instruction multiple data (SIMD) execution
and parallelism benefits, respectively. Design effort for GPUs comprise
converting the applications into GPU-compatible code, and FPGAs involve
hardware descriptions (and/or) high-level synthesis. ASICs provide the
highest energy efficiency since they are specifically designed for the target
application and enjoy the energy efficiency benefits that hardware imple-
mentations provide. However, the effort for ASICs that include design,

development, fabrication, software development and bringup could run



into several months—years worth of time.

General-purpose multiprocessor systems provide ease of flexibility
and programmability at the cost of energy-efficiency, and special-purpose
ASICs provide superior energy-efficiency with substantially higher de-
sign effort. Domain-specific systems-on-chip (DSSoCs), an instance of
heterogeneous computing architectures, exploit the best of both worlds by
integrating general-purpose, special-purpose and hardware accelerator
cores on a single die, thereby providing programmability through the
general-purpose cores and energy-efficiency through the special purpose
cores and hardware accelerators (shown in Figure 1.2). The architec-
ture is domain-specific because the processing elements are judiciously
selected in such a way that frequently occurring kernels in a particular
domain can be accelerated using the specialized cores. On the one hand,
integrating too many accelerators increases the design time, design cost,
chip complexity, die area, power and energy consumption. On the other
hand, including too few accelerators may force a majority of the kernels
to still be executed in the general-purpose cores, thereby degrading the
energy-efficiency and the purpose of DSSoCs. For a given target domain,
DSSoCs can provide three orders of magnitude higher energy-efficiency
in comparison to general-purpose processors [25].

Harvesting the full potential of DSSoCs depends critically on the inte-
gration of optimal combination of computing resources and their effective
utilization and management at runtime. Hence, the first step in the design
flow includes analysis of the domain applications to identify the commonly
used kernels [98]. This analysis aids in determining the set of specialized
hardware accelerators for the target applications. For example, DSSoCs
targeting wireless communication applications obtain better performance
with the inclusion of Fast-Fourier Transform (FFT) accelerators. Simi-
larly, SoCs optimized for autonomous driving applications integrate deep
neural network (DNN) accelerators [55]. Then, a wide range of design-



and run-time algorithms are employed to schedule the applications to the
processing elements (PEs) in the DSSoC [24, 23, 90, 26]. Finally, dynamic
power and thermal management (DTPM) techniques optimize the SoC for
energy efficient operations at runtime. In this report, we introduce novel
task scheduling algorithms to maximize the energy efficiency of DSSoCs
and tools that help in both fast and effective validation of DSSoCs.

Section 1.1 presents the novel imitation learning based task scheduling
algorithm for DSSoCs. Section 1.2 describes the high-level simulation
framework for rapid design space exploration and evaluation of scheduling
algorithms and dynamic voltage-frequency governors. The proposed work
on an incremental learning algorithm for decision trees is discussed in
Section 2. The need and ideas for an integrated SoC and network-on-chip
voltage-frequency scaling technique is presented in Section 3. Section 4
concludes the report.



1.1 Imitation Learning based Task Scheduling
for DSSoCs

1.1.1 Introduction

Homogeneous multi-core architectures have successfully exploited thread-
and data-level parallelism to achieve performance and energy efficiency
beyond the limits of single-core processors. While general-purpose com-
puting achieves programming flexibility, it suffers from significant per-
formance and energy efficiency gap when compared to special-purpose
solutions. Domain-specific architectures, such as graphics processing
units (GPUs) and neural network processors, are recognized as some of
the most promising solutions to reduce this gap [40]. Domain-specific
systems-on-chip (DSSoCs), a concrete instance of this new architecture,
judiciously combine general-purpose cores, special-purpose processors,
and hardware accelerators. DSSoCs approach the efficacy of fixed-function
solutions for a specific domain while maintaining programming flexibility
for other domains [36].

The success of DSSoCs depends critically on satisfying two intertwined
requirements. First, the available processing elements (PEs) must be
utilized optimally, at runtime, to execute the incoming tasks. For instance,
scheduling all tasks to general-purpose cores may work, but diminishes the
benefits of the special-purpose PEs. Likewise, a static task-to-PE mapping
could unnecessarily stall the parallel instances of the same task. Second,
acceleration of the domain-specific applications needs to be oblivious to
the application developers to make DSSoCs practical. This work addresses
these two requirements simultaneously.

The task scheduling problem involves assigning tasks to processing ele-
ments and ordering their execution to achieve the optimization goals, e.g.,

minimizing execution time, power dissipation, or energy consumption. To



this end, applications are abstracted using mathematical models, such as
directed acyclic graph (DAG) and synchronous data graphs (SDG) that
capture both the attributes of individual tasks (e.g., expected execution
time) and the dependencies among the tasks [96, 17, 85]. Scheduling these
tasks to the available PEs is a well-known NP-complete problem [32, 99].
An optimal static schedule can be found for small problem sizes using opti-
mization techniques, such as mixed-integer programming (MIP) [35] and
constraint programming (CP) [83]. These approaches are not applicable
to runtime scheduling for two fundamental reasons. First, statically com-
puted schedules lose relevance in a dynamic environment where tasks
from multiple applications stream in parallel, and PE utilizations change
dynamically. Second, the execution time of these algorithms, hence their
overhead, can be prohibitive even for small problem sizes with few tens
of tasks. Therefore, a variety of heuristic schedulers, such as shortest
job first (SJF) [101] and complete fair schedulers (CFS) [72], are used in
practice for homogeneous systems. These algorithms trade off the quality
of scheduling decisions and computational overhead.

To improve this state of affairs, this work addresses the following chal-
lenging proposition: Can we achieve a scheduler performance close to that of
optimal MIP and CP schedulers, while using minimal runtime overhead compared
to commonly used heuristics? Furthermore, we investigate this problem in
the context of heterogeneous PEs. We note that much of the scheduling in
heterogeneous many-core systems is tuned manually, even to date [11].
For example, OpenCL, a widely-used programming model for heteroge-
neous cores, leaves the scheduling problem to the programmers. Experts
manually optimize the task to resource mapping based on their knowl-
edge of application(s), characteristics of the heterogeneous clusters, data
transfer costs, and platform architecture. However, manual optimization
suffers from scalability for two reasons. First, optimizations do not scale

well for all applications. Second, extensive engineering efforts are required



to adapt the solutions to different platform architectures and varying lev-
els of concurrency in applications. Hence, there is a critical need for a
methodology to provide optimized scheduling solutions applicable to a
variety of applications at runtime in heterogeneous many-core systems.

Scheduling has traditionally been considered as an optimization prob-
lem [35]. We change this perspective by formulating runtime scheduling
for heterogeneous many-core platforms as a classification problem. This
perspective and the following key insights enable us to employ machine
learning (ML) techniques to solve this problem:

Key insight 1: One can use an optimal (or near-optimal) scheduling al-
gorithm offline without being limited by computational time and other
runtime overheads. Then, the inputs to this scheduler and its decisions
can be recorded along with relevant features to construct an Oracle.

Key insight 2: One can design a policy that approximates the Oracle with
minimum overhead and use this policy at runtime.

Key insight 3: One can exploit the effectiveness of ML to learn from Ora-
cle with different objectives, which includes minimizing execution time,
energy consumption, etc.

Realizing this vision requires addressing several challenges. First, we
need to construct an Oracle in a dynamic environment where tasks from
multiple applications can overlap arbitrarily, and each incoming applica-
tion instance observes a different system state. Finding optimal schedules
is challenging even offline, since the underlying problem is NP-complete.
We address this challenge by constructing Oracles using both CP and a
computationally expensive heuristic, called earliest task first (ETF) [42].
ML uses informative properties of the system (features) to predict the cate-
gory in a classification problem. The second challenge is identifying the
minimal set of relevant features that can lead to high accuracy with mini-
mal overhead. We store a small set of 45 relevant features for a many-core

platform with 16 processing elements along with the Oracle to minimize



the runtime overhead. This enables us to represent a complex scheduling
decision as a set of features and then predict the best processing element
for task execution. The final challenge is approximating the Oracle ac-
curately with a minimum implementation overhead. Since runtime task
scheduling is a sequential decision-making problem, supervised learn-
ing methodologies, such as linear regression and decision tree, may not
generalize for unseen states at runtime. Reinforcement learning (RL) and
imitation learning (IL) are more effective for sequential decision-making
problems [92, 59, 87]. Indeed, RL has shown promise when applied to the
scheduling problem [63, 64, 104], but it suffers from slow convergence and
sensitivity of the reward function [49, 58]. In contrast, IL takes advantage
of the expert’s inherent knowledge and produces policies that imitate the
expert decisions [88]. Hence, we propose an IL-based framework that
schedules incoming applications to heterogeneous multi-core systems.
The proposed IL framework is formulated to facilitate generalization,
i.e. it can be adapted to learn from any Oracle that optimizes a specific ob-
jective, such as performance and energy efficiency, of an arbitrary DSSoC.
We evaluate the proposed framework with six domain-specific applica-
tions from wireless communications and radar systems. The proposed IL
policies successfully approximate the Oracle with more than 99% accuracy,
achieving fast convergence and generalizing to unseen applications. In
addition, the scheduling decisions are made within 1.1us (on an Arm A53
core), which is better than CFS performance (1.2us). To the best of our
knowledge, this is the first imitation learning-based scheduling framework
for heterogeneous many-core systems capable of handling multiple ap-
plications exhibiting streaming behavior. The main contributions of this

section are as follows:

e An imitation learning framework to construct policies for task schedul-

ing in heterogeneous many-core platforms;

e Oracle design using both optimal and heuristic schedulers for performance-
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and energy- based optimization objectives;

e Extensive experimental evaluation of the proposed IL policies along

with latency and storage overhead analysis;

e Performance comparison of IL policies against reinforcement learning

and optimal schedules obtained by constraint programming.

The rest of this work is organized as follows. We review the related
work in Section 1.1.2. Section 1.1.3 provides background information
on DAG scheduling and imitation learning. In Section 1.1.4, we discuss
the proposed methodology, followed by relevant experimental results in
Section 1.1.6. Section 1.1.7 presents the conclusions and possible future
research for this work.

1.1.2 Related Work and Novel Contributions

Current many-core systems use runtime heuristics to enable scheduling
with low overheads. For example, the completely fair scheduler (CFS) [72],
widely used in Linux systems, aims to provide fairness for all processes in
the system. CFS maintains two queues (active and expired) to manage
task scheduling. In addition, CFS gives a fixed time quantum for each
process. Tasks are swapped between active and expired queues based
on activation and expiration of the time quantum. However, complex
heuristics are required to manage such queues. CFS also does not gen-
eralize to optimization objectives apart from performance and fairness.
More importantly, CFS scheduling is limited to general-purpose cores and
lacks support for specialized cores and hardware accelerators [19]. With
the same limitations, shortest job first (SJF) [101] scheduler estimates the
task’s CPU processing time and assigns the first available resource to the
task with the shortest execution time.

List scheduling techniques [85, 52] for DAGs [96, 22, 13] prioritize
various objectives, such as energy [17, 93], fairness [109], security [108].
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In general, this technique places the nodes (tasks) of a DAG in a list
and provides a PE assignment and order at design time. Heterogeneous
earliest finish time (HEFT) [96] is one example, in which an upward rank
is computed to perform the scheduling decisions. The authors in [22] use a
lookahead algorithm as an enhancement to the HEFT scheduler to improve
the execution time, but suffers from fourth order complexity O(n*) on the
number of tasks (n). Another recent technique shows improvement in
performance with quadratic complexity [13]. However, these algorithms
suffer from the time complexity problem and are tailored to particular
objectives and fail to generalize to a combination of objectives and choice
of applications.

Machine learning (ML)-based schedulers show promise in eliminat-
ing the drawbacks of list scheduling and runtime heuristic techniques.
ML-based schedulers possess the capabilities to be further tuned at run-
time [63]. A recent support vector machine (SVM)-based scheduler for
OpenCL kernels assigns kernels (tasks) between CPUs and GPUs [105].
In contrast to schedulers that use supervised learning, authors in [65] uses
reinforcement learning (RL) to schedule Tensorflow device placement,
but lacks the ability of scheduling streaming jobs. DeepRM [63 ] uses deep
neural networks with RL for scheduling at an application granularity as
opposed to using the notion of DAGs. On the other hand, Decima [64] uses
a combination of graph neural networks and RL to perform coarse-grained
processing-cluster level scheduling for streaming DAGs.

RL-based scheduling techniques have two major drawbacks. First, they
require a significant number of episodes to converge. For example, the
technique proposed in [64] takes 50k episodes, with 1.5 seconds each,
to converge to a solution that is equivalent to 21 hours of simulation in
Nvidia Tesla P100 GPU. Second, the efficiency of an RL-based technique
predominantly depends on the choice of the reward function. Usually,

the reward function is hand-tuned, depending on the problem under
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consideration.

To overcome these difficulties, we propose an IL-based scheduling
methodology. Since IL uses an Oracle to construct a policy, it does not
suffer from slow convergence, as seen in RL. IL-based policies were initially
used in robotics to show their fast convergence property [88]. Recently,
the use of imitation learning to intelligently manage power and energy
consumption in SoCs has been demonstrated [49, 58]. To the best of
our knowledge, this is the first approach that applies IL for multi-application
streaming task scheduling in heterogeneous many-core platforms.

1.1.3 Background and Overview

The runtime scheduling problem addressed in this work is illustrated in
Fig. 1.3. We consider streaming applications that can be modeled using
directed acyclic graphs, such as the one shown in Fig. 1.3(a). These ap-
plications process data frames that arrive at a varying rate over time. For
example, a WiFi-transmitter, one of our domain applications, receives and
encodes raw data frames before they are transmitted over the air. Data
frames from a single application or multiple simultaneous applications can
overlap in time as they go through the tasks that compose the application.
For instance, Task-1 in Fig. 1.3(a) can start processing a new frame, while
other tasks continue processing earlier frames. Processing of a frame is
said to be completed after the terminal task without any successor (Task-7
in Fig. 1.3(a)) is executed. We define the application formally to facilitate
description of the schedulers.

Definition 1: An application graph G A, (7, €) is a directed acyclic graph,
where each node T; € T represents the tasks that compose the application.
Directed edge ey; € € from task T; to T; shows that Tj cannot start process-
ing a new frame before the output of T; reaches Tj for all T;, Tj € T. v;; for
each edge e;; € € denotes the communication volume over this edge. It is

used to account for the communication latency.
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Figure 1.3: (a) An example DAG consisting of 7 tasks (b) A heterogeneous
computing platform with 4 processing elements and list of tasks in DAG
supported by each PE (c) A sample schedule of the DAG on the heteroge-
neous many-core system.
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Figure 1.4: An overview of the proposed imitation learning framework
for task scheduling in heterogeneous many-core systems. The framework
integrates the system configuration, profiling information, scheduling
algorithms and applications to construct Oracle, and train IL policies for
task scheduling. The IL policies, that are improved using DAgger, are then
evaluated on the heterogeneous many-core system at runtime.

Each task in a given application graph G, can execute on different
processing elements in the target DSSoC. We formally define the target
DSSoC as follows:

Definition 2: An architecture graph G orcn (P, £) is a directed graph, where
each node P; € P represents processing elements, and L;; € £ represents
the communication links between P; and P; in the target SoC. The nodes

and links have the following quantities associated with them:

o texe(Pi, Tj) is the execution time of task T; on PE P; € P, if P; can
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execute (i.e., it supports) T;.

® t.omm(Lij) is the communication latency from P; to P; for all Py, P; €
P.

e C(P;) € Cis the PE cluster P; € P belongs to.

The DSSoC example in Fig. 1.3(b) assumes one big core cluster, one LIT-
TLE core cluster, and two hardware accelerators each with a single PE
in them for simplicity. The low-power (LITTLE) and high-performance
(big) general-purpose clusters can support the execution of all tasks, as
shown in the supported tasks column in Fig. 1.3(b). In contrast, hardware
accelerators (Acc-1 and Acc-2) support only a subset of tasks.

A particular instance of the scheduling problem is illustrated in Fig. 1.3(c).
Task-6 is scheduled to big core (although it executes faster on Acc-2) since
Acc-2 is not available at the time of decision making. Similarly, Task-4 is
scheduled to the LITTLE core (even if it executes faster on big) because the
big core is utilized when Task-4 is ready to execute. In general, scheduling
complex DAGs in heterogeneous many-core platforms present a multitude
of choices making the runtime scheduling problem highly complex. The
complexity increases further with: (1) overlapping DAGs at runtime, (2)
executing multiple applications simultaneously, and (3) optimizing for
objectives such as performance, energy, etc.

The proposed solution leverages imitation learning, and is outlined
in Fig. 1.4. It is also referred to as learning by demonstration, and is an
adaption of supervised learning for sequential decision making problems.
The decision-making space is segmented into distinct decision epochs,
called states (8). There exists a finite set of actions A for every state s € 8.
IL uses policies that map each state (s) to a corresponding action.
Definition 3: Oracle Policy (expert) 7*(s) : $ — A maps a given system
state to the optimal action. In our runtime scheduling problem, the state

includes the set of ready tasks and actions that correspond to assignment
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Table 1.1: Summary of the notations used in this work

T Task-j T Set of Tasks
P; PE-i P Set of PEs
c Cluster-c \ e Set of clusters
L. Communication links C Set of
Y between P; to P; communication links
Execution time of Communication
texe(Pi, Tj) task T; on PE P; teomm (Ly) latency from P; to P;
s State-s 8 Set of states
Communication volume )
Vik from task T; to Ty A Set of actions
Fs Static features ‘rf D Dynamic features
e (s) Apply cluster policy o (s) Apply PE policy
c for state s P.e in cluster-c for state s
u Policy | Oracle policy
G Policy for many-core G Oracle for many-core
platform configuration G platform configuration G

of tasks T to processing elements P. Given the Oracle 7t*, the goal with

imitation learning is to learn a runtime policy that can approximate it. We

construct an Oracle offline and approximate it using a hierarchical policy

with two levels. Consider a generic heterogeneous many-core platform
with a set of clusters C, as illustrated in Fig. 1.4. At the first level, an IL
policy chooses one cluster (among n clusters) for a task to be executed in.

The first-level policy assigns the ready tasks to one of the clusters in C,

since each PE within the same cluster has the same static parameters. Then,

a cluster-level policy assigns the tasks to a specific PE within that cluster.

The details of state representation, Oracle generation, and hierarchical

policy design are presented in the next section.
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1.1.4 Proposed Methodology and Approach

This section first introduces the system state representation, including the
features used by the IL policies. Then, it presents the Oracle generation
process, and the design of the hierarchical IL policies. Table 1.1 details the

notations that will be used hereafter.

1.1.5 System State Representation

Offline scheduling algorithms are NP-complete even though they rely
on static features, such as average execution times. The complexity of
runtime decisions is further exacerbated as the system schedules multiple
applications that exhibit streaming behavior. In the streaming scenario,
incoming frames do not observe an empty system with idle processors.
In strong contrast, PEs have different utilization, and there may be an
arbitrary number of partially processed frames in the wait queues of the
PEs. Since our goal is to learn a set of policies that generalize to all appli-
cations and all streaming intensities, the ability to learn the scheduling
decisions critically depends on the effectiveness of state representation.
The system state should encompass both static and dynamic aspects of the
set of tasks, applications, and the target platform. Naive representations
of DAGs include adjacency matrix and adjacency list. However, these
representations suffer from drawbacks such as large storage requirements,
highly sparse matrices which complicates the training of supervised learn-
ing techniques, and scalability for multiple streaming applications. In
contrast, we carefully study the factors that influence task scheduling in a
streaming scenario and construct features that accurately represent the
system state. We broadly categorize the features that make up the state as

follows:

o Task features: This set includes the attributes of individual tasks. They

can be both static, such as average execution time of a task on a given
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PE (texe(Pi, Tj)), and dynamic, such as the relative order of a task in

the queue.

o Application features: This set describes the characteristics of the entire
application. They are static features, such as the number of tasks in

the application and the precedence constraints between them.

o PE features: This set describes the dynamic state of the processing
elements. Examples include the earliest available times (readiness)

of the PEs to execute tasks.

The static features are determined at the design time, whereas the dynamic
features can only be computed at runtime. The static features aid in exploit-
ing design time behavior. For example, texe(Ps, Tj) helps the scheduler
compare the expected performance of different PEs. Dynamic features,
on the other hand, present the runtime dependencies between tasks and
jobs and also the busy states of the processing elements. For example,
the expected time when cluster c becomes available for processing adds
invaluable information, which is only available at runtime.

In summary, the features of a task comprehensively represent the task
itself and the state of the processing elements in the system to effectively
learn the decisions from the Oracle policy. The specific types of features
used in this work to represent the state and their categories are listed
in Table 1.2. The static and dynamic features are denoted as Js and Jp,
respectively. Then, we define the systems state at a given time instant k

using the features in Table 1.2 as:
Sk :?S,kU?D,k (11)

where Js and Jp . denote the static and dynamic features respectively
at a given time instant k. For an SoC with 16 processing elements grouped

as 5 clusters, we obtain a set of 45 features for the proposed IL technique.
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Table 1.2: Types of features employed for state representation from point
of view of task Tj

Feature Type Feature Description Feature Categories
ID of task-j in the DAG Task
Execution time of a task T; Task
in PE Pi (texe(Pi/ T])) PE
Static Downward depth of task Tj Task
(Fs) in the DAG Application
IDs of predecessor tasks Task
of task Tj Application
Application ID Application
Power consumption of task T; Task
in PE P; PE
Relative order of task Tj in
Task
the ready queue
Earliest time when PEs
Dynamic  in a cluster-c are ready PE
(9p) for task execution
Clusters in which predecessor Task
tasks of task T; executed
Communication volume from task
Task

Tj to task Tk (ij)

1.1.5.1 Oracle Generation

The goal of this work is to develop generalized scheduling models for
streaming applications of multiple types to be executed on heterogeneous
many-core systems. The generality of the IL-based scheduling framework
enables using IL with any Oracle. The Oracle can be any scheduling
algorithm that optimizes an arbitrary metric, such as execution time, power

consumption, and total SoC energy.
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Algorithm 1: Hierarchical imitation learning Framework

1 fortask T € T do
2 s = Get current state for task T
/* Level-1 IL policy to assign cluster */

3 c=7c(s)
/* Level-2 IL policy to assign PE */
4 P= TCP,C(S)

/* Assign T to the predicted PE */
5 end

To generate the training dataset, we implemented both optimal sched-
ulers using CP and heuristics. These schedulers are integrated into a SoC
simulation framework, as explained under experimental results. Suppose
a new task T; becomes ready at time k. The Oracle is called to schedule
the task to a PE. The Oracle policy for this action task with system state s
can be expressed as:

o (si) = Py, (12)

where P; € P is the PE T; scheduled to and sy is the system state defined
in Equation 1.1. After each scheduling action, the particular task that is
scheduled (Tj), the system state sy € §, and the scheduling decision are
added to the training data. To enable the Oracle policies to generalize for
different workload conditions, we constructed workload mixes using the
target applications at different data rates, as detailed in Section 1.1.6.1.

1.1.5.2 IL-based Scheduling Framework

This section presents the hierarchical IL-based scheduler for runtime task
scheduling in heterogeneous many-core platforms. A hierarchical struc-
ture is more scalable since it breaks a complex scheduling problem down
into simpler problems. Furthermore, it achieves a significantly higher
classification accuracy compared to a flat classifier (>93% versus 55%), as
detailed in Section 1.1.6.4.
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Our hierarchical IL-based scheduler policies approximate the Oracle
with two levels, as outlined in Algorithm 1. The first level policy 7c(s) :
8§ — Cis a coarse-grained scheduler that assigns tasks into clusters. This is
a natural choice since individual PEs within a cluster have identical static
parameters, i.e., they differ only in terms of their dynamic states. The
second level (i.e., fine-grained scheduling) consists of one dedicated policy
7tp,c(s) : & — P for each cluster ¢ € €. These policies assign the input task
to a PE within its own cluster, i.e., 7tp . (s) € P€¢, Vc € C. We leverage off-
the-shelf machine learning techniques, such as decision trees and neural
networks, to construct the IL policies. The application of these policies
approximates the corresponding Oracle policies constructed offline.

IL policies suffer from error propagation as the state-action pairs in the
Oracle are not necessarily i.i.d. (independent and identically distributed).
Specifically, if the decision taken by the IL policies at a particular decision
epoch is different from the Oracle, then the resultant state for the next
epoch is also different with respect to the Oracle. Therefore, the error
further accumulates at each decision epoch. This can occur during run-
time task scheduling when the policies are applied to applications that
the policies did not train with. This problem is addressed by the data
aggregation algorithm (DAgger), proposed to improve IL policies [82].
DAgger adds the system state and the Oracle decision to the training data
whenever the IL policy makes a wrong decision. Then, the policies are
retrained after the execution of the workload.

DAgger is not readily applicable to the runtime scheduling problem
since the number of states is unbounded as a scheduling decision at time
t for state s (s¢) can result in any possible resultant state, s, 1. In other
words, the feature space is continuous, and hence, it is infeasible to gener-
ate an exhaustive Oracle offline. We overcome this challenge by generating
an Oracle on-the-fly. More specifically, we incorporate the proposed frame-
work into a simulator. The offline scheduler used as the Oracle is called
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Algorithm 2: Methodology to aggregate data in a hierarchical
imitation learning framework

1 for task T € T do
s = Get current state for task T
if e (s) == m(s) then
if 7tp ¢ (s) /= mp . (s) then
| Aggregate state s and label 71}, . (s) to the dataset
end

end
else

O© ® N o Uyt e @D

Aggregate state s and label 7t{- (s) to the dataset
c* =mE(s)
if 7tp c« (s) /= 7p .. (s) then
| Aggregate state s and label 71}, .(s) to the dataset
end

- e
N = o

-y
»

end
/* Assign T to the predicted PE */

ey
=

15 end

dynamically for each new task. Then, we augment the training data with
all the features, Oracle actions, as well as the results of the IL policy under
construction. Hence, the data aggregation process is performed as part of
the dynamic simulation.

The hierarchical nature of the proposed IL framework introduces one
more complexity to data aggregation. The cluster policy’s output may be
correct, while the PE cluster reaches a wrong decision (or vice versa). If the
cluster prediction is correct, we use this prediction to select the PE policy
of that cluster, as outlined in Algorithm 2. Then, if the PE prediction is
also correct, the execution continues; otherwise, the PE data is aggregated
in the dataset. However, if the cluster prediction does not align with the
Oracle, in addition to aggregating the cluster data, an on-the-fly Oracle is
invoked to select the PE policy, then the PE prediction is compared to the

Oracle, and the PE data is aggregated in case of a wrong prediction.
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1.1.6 Experimental Results

Section 1.1.6.1 presents the experimental methodology and setup. Sec-
tion 1.1.6.2 explores different machine learning classifiers for IL. The sig-
nificance of the proposed features is studied using a decision tree classifier
in Section 1.1.6.3. Section 1.1.6.4 presents the evaluation of the proposed
IL-scheduler. Section 1.1.6.5 analyzes the generalization capabilities of
IL-scheduler. The performance analysis with multiple workloads is pre-
sented in Section 1.1.6.6. We demonstrate the evaluation of the proposed
IL technique to energy-based optimization objectives in Section 1.1.6.7.
Section 1.1.6.8 presents comparisons with RL-based scheduler and Sec-
tion 1.1.6.9 analyzes the complexity of the proposed approach.

1.1.6.1 Experimental Methodology and Setup

Table 1.3: Characteristics of applications used in this study and the number
of frames of each application in the workload

. Representation
#of Execution Supported .
App Tasks Time (us) Clusters in workload
#frames #tasks
WiFi-TX 27 301 big, LITTLE, FFT 69 1863
- big, LITTLE,
WiFi-RX 34 71 FFT, Viterbi 111 3774
RangeDet 7 177 big, LITTLE, FFT 64 448
SC-ITX 8 56 big, LITTLE 64 512
SC-RX 8 154 l\’,i.g' LITILE, 91 728
iterbi
TempMit 10 g1 Dis LITILE, 101 1010

Matrix mult.

TOTAL 500 8335
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Domain Applications: The proposed IL scheduling methodology is eval-
uated using applications from wireless communication and radar pro-
cessing domains. We employ WiFi-transmitter (WiFi-TX), WiFi-receiver
(WiFi-RX), range detection (RangeDet), single-carrier transmitter (SC-TX),
single-carrier receiver (SC-RX) and temporal mitigation (TempMit) appli-
cations, as summarized in Table 1.3. We construct workload mixes using

these applications and run them in parallel.

Big Cluster
General-Purpose (4 PEs)

Matrix Multiplication

LITTLE Cluster | xcco/erator(2 PEs)
General-Purpose - -
(4 PEs) Viterbi Decoder

Accelerator (2 PEs)

Fast Fourier Transform
Accelerator (4 PEs)

Figure 1.5: Configuration of the heterogeneous many-core platform com-
prising 16 processing elements, used for scheduler evaluations.

Heterogeneous DSSoC Configuration: Considering the nature of applica-
tions, we employ a DSSoC with 16 PEs, including accelerators for the most
computationally intensive tasks; they are divided into five clusters with
multiple homogeneous PEs, as illustrated in Fig. 1.5. To enable power-
performance trade-off while using general-purpose cores, we include a big
cluster with four Arm A57 cores and a LITTLE cluster with four Arm A53
cores. In addition, the DSSoC integrates accelerator clusters for matrix
multiplication, FFT, and Viterbi decoder to address the computing require-
ments of the target domain applications summarized in Table 1.3. The
accelerator interfaces are adapted from [57]. The number of accelerator
instances in each cluster is selected based on how much the target applica-
tions use them. For example, three out of the six reference applications

involve FFT, while range detection application alone has three FFT opera-
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tions. Therefore, we employ four instances of FFT hardware accelerators
and two instances of Viterbi and matrix multiplication accelerators, as
shown in Fig. 1.5.

Simulation Framework: We evaluate the proposed IL scheduler using the
discrete event-based simulation framework [14], which is validated against
two commercial SoCs: Odroid-XU3 [39] and Zynq Ultrascale+ ZCU102 [7].
This framework enables simulations of the target applications modeled
as DAGs under different scheduling algorithms. More specifically, a new
instance of a DAG arrives following a specified inter-arrival time rate
and distribution, such as an exponential distribution. After the arrival
of each DAG instance, called a frame, the simulator calls the scheduler
under study. Then, the scheduler uses the information in the DAG and the
current system state to assign the ready tasks to the waiting queues of the
PEs. The simulator facilitates storing this information and the scheduling
decision to construct the Oracle, as described in Section 1.1.5.1.

The execution times and power consumption for the tasks in our do-
main applications are profiled on Odroid-XU3 and Zynq ZCU102 SoCs.
The simulator uses these profiling results to determine the execution time
and power consumption of each task. After all the tasks that belong to
the same frame are executed, the processing of the corresponding frame
completes. The simulator keeps track of the execution time and energy
consumed for each frame. These end-to-end values are within 3%, on
average, of the measurements on Odroid-XU3 and Zynq ZCU102 SoCs.
Scheduling Algorithms used for Oracle and Comparisons: We developed
a CP formulation using IBM ILOG CPLEX Optimization Studio [8] to
obtain the optimal schedules whenever the problem size allows. After the
arrival of each frame, the simulator calls the CP solver to find the schedule
dynamically as a function of the current system state. Since the CP solver
takes hours for large inputs (~100 tasks), we implemented two versions
with one minute (CP;_in) and five minutes (CPs_,,in) time-out per
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Figure 1.6: A comparison of average runtime per scheduling decision for
each application with CP5_,in, CP1_min and ETF schedulers.

scheduling decision. When the model fails to find an optimal schedule, we
use the best solution found within the time limit. Fig. 1.6 shows that the
average time of the CP solver per scheduling decision for the benchmark
applications is about 0.8 seconds and 3.5 seconds, respectively, based on
the time limit. Consequently, one entire simulation can take up to 2 days,
even with a time-out.

We also implemented the ETF heuristic scheduler, which goes over all
tasks and possible assignments to find the earliest finish time considering
communication overheads. Its average execution time is close to 0.3 ms,
which is still prohibitive for a runtime scheduler, as shown in Fig. 1.6.
However, we observed that it performs better than CP;_ i, and marginally
worse than CPs5_,in, as we detail in Section 1.1.6.4.

Oracle generation with the CP formulation is not practical for two
reasons. First, it is possible that for small input sizes (e.g., less than ten
tasks), there might be multiple (incumbent) optimal solutions, and CP
would choose one of them randomly. The other reason is that for large
input sizes, CP terminates at the time limit providing the best solution
found so far, which is sub-optimal. The sub-optimal solutions produced by



26

Table 1.4: Classification accuracies of trained IL policies with different
machine learning classifiers.

Cluster | LITTLE big MatMult FFT Viterbi
Policy | Policy Policy Policy Policy Policy

DT 99.6 93.8 95.1 99.9 99.5 100
SvC 95.0 85.4 89.9 97.8 97.5 98.0
LR 89.9 79.1 72.0 98.7 98.2 98.0
NN 97.7 93.3 93.6 99.3 98.9 98.1

Classifier

Table 1.5: Execution time and storage overheads per IL policy for decision
tree and neural network classifiers.

Latency (us)
Odroid-XU3 Zynq Ultrascale+ ZCU102

Classifier

Storage (KB)

(Arm A15) (Arm A53)
DT 1.1 1.1 19.3
NN 14.4 37 16.9

CP vary based on the problem size and the limit. In contrast, ETF is easier
to imitate at runtime and its results are within 8.2% of CP5_ i, results.
Therefore, we use ETF as the Oracle policy in our experiments and use the
results of CP schedulers as reference points. We train IL policies for this

Oracle in Section 1.1.6.2 and evaluate their performance in Section 1.1.6.4.

1.1.6.2 Exploring Different Machine Learning Classifiers for IL

We explore various ML classifiers within the IL methodology to approx-
imate the Oracle policy. One of the key metrics that drive the choice of
machine learning techniques is the classification accuracy of the IL policies.
At the same time, the policy should also have a low storage and execution
time overheads. We evaluate the following algorithms for classification
accuracy and implementation efficiency: decision tree (DT), support vec-

tor classifier (SVC), logistic regression (LR), and a multi-layer perceptron
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Table 1.6: Training accuracy of IL policies with subsets of the proposed
feature set

Features Excluded Cluster LITTLE big MatMul FFT Viterbi
from Training Policy Policy Policy Policy Policy Policy

None 99.6 93.8 95.1 99.9 99.5 100
Static features 87.3 93.8 92.7 999 99.5 100
Dynamic features 88.7 521 57.6 94.2 70.5 98

PE availability times 922 511 615 94.1 66.7 98.1
Task ID, depth, app. ID  90.9 93.6 953 99.9 99.5 100

neural network (NN) with 4 hidden layers and 32 neurons in each hidden
layer.

The classification accuracy of ML algorithms under study are listed
in Table 1.4. In general, all classifiers achieve a high accuracy to choose
the cluster (the first column). At the second level, they choose the correct
PE with high accuracy (>97%) within the hardware accelerator clusters.
However, they have lower accuracy and larger variation for the LITTLE
and big clusters (highlighted columns). This is intuitive as the LITTLE
and big clusters can execute all types of tasks in the applications, whereas
accelerators execute fewer tasks. In strong contrast, a flat policy, which
directly predicts the PE, results in training accuracy with 55% at best.
Therefore, we focus on the proposed hierarchical IL methodology.

Decision trees (DT) trained with a maximum depth of 12 produce the
best accuracy for the cluster and PE policies, with more than 99.5% accu-
racy for the cluster and hardware acceleration policies. DT also produces
an accuracy of 93.8% and 95.1% to predict PEs within the LITTLE and
big clusters, respectively, which is the highest among all the evaluated
classifiers. The classification accuracy of NN policies are comparable to
DT, with a slightly lower cluster prediction accuracy of 97.7%. In contrast,
support vector classifiers (SVC) and logistic regression (LR) are not pre-

terred due to lower accuracy of less than 90% and 80%, respectively, to
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predict PEs within LITTLE and big clusters.

We choose decision trees and neural networks to analyze the latency
and storage overheads (due to their superior performance). The latency
of DT is 1.1us on Arm Cortex-A15 in Odroid-XU3 and on Arm Cortex-
A53 in Zynq ZCU102, as shown Table 1.5. In comparison, the scheduling
overhead of CFS, the default Linux scheduler, on Zynq ZCU102 running
Linux Kernel 4.9 is 1.2us, which is slightly larger than our solution. The
storage overhead of an DT policy is 19.33 KB. The NN policies incur an
overhead of 14.4us on the Arm Cortex-A15 cluster in Odroid-XU3 and 37us
on Arm Cortex-A53 in Zynq, with a storage overhead of 16.89 KB. NNs
are preferable for use in an online environment as their weights can be
incrementally updated using the back-propagation algorithm. However,
due to competitive classification accuracy and lower latency overheads of
DT over NNs, we choose DT for the rest of the experiments.

------ o-- Oracle —%— IL (Proposed)
—e— Static Features Excl. —v— Dynamic Features EXxcl.
—e— PE Avail. Times Excl. —=— Task Features Excl.
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Figure 1.7: Average execution time comparison of the applications with
Oracle, IL (Proposed) and IL policies with subsets of features. As shown,
the average execution time with IL closely follows the Oracle.
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1.1.6.3 Feature Space Exploration with Decision Tree Classifier

This section explores the significance of the features chosen to represent
the state. For this analysis, we assess the impact of the input features
on the training accuracy with DT classifier and average execution time
following a systematic approach.

The training accuracy with subsets of features and the corresponding
scheduler performance is shown in Table 1.6 and Fig. 1.7 respectively.
First, we exclude all static features from the training dataset. The training
accuracy for the prediction of the cluster significantly drops by 10%. Since
we use hierarchical IL policies, an incorrect first-level decision results in a
significant penalty for the decisions at the next level. Second, we exclude
all dynamic features from training. This results in a similar impact for
the cluster policy (10%) but significantly affects the policies constructed
for the LITTLE, big, and FFT. Next, a similar trend is observed when
PE availability times are excluded from the feature set. The accuracy is
marginally higher since the other dynamic features contribute to learning
the scheduling decisions. Finally, we remove a few task related features
such as the downward depth, task, and application identifier. In this case,
the impact is to the cluster policy accuracy since these features describe
the node in the DAG and influence the cluster mapping.

As observed in Fig. 1.7, the average execution time of the workload
significantly degrades when all features are not included. Hence, the
chosen features help to construct effective IL policies, approximating the

Oracle with over 99% accuracy in execution time.

1.1.6.4 IL-Scheduler Performance Evaluation

This section compares the performance of the proposed policy to the ETF
Oracle, CP1_min, and CPs5_in. Since heterogeneous many-core systems
are capable of running multiple applications simultaneously, we stream

the frames in our application mix (see Table 1.3) with increasing injection
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Figure 1.8: Comparison of average job execution time between Oracle, CP
solutions, and imitation learning policies to schedule a workload com-
prising a mix of six streaming applications. IL scheduler policies with
baseline-IL (before DAgger) and with IL-DAgger (Proposed) are shown in
the comparison.

rates. For example, a normalized throughput of 1.0 in Fig. 1.8 corresponds
to 19.78 frames/ms. Since the frames are injected faster than they can be
processed, there are many overlapping frames at any given time.

First, we train the IL policies with all six reference applications and
refer to this as the baseline-IL scheduler. IL policies suffer from error
propagation due to the non i.i.d. nature of training data. To overcome this
limitation, we use a data aggregation technique adapted for a hierarchical
IL framework (IL-DAgger), as discussed in Section 1.1.5.2. A DAgger
iteration involves executing the entire workload. We execute ten DAgger
iterations and choose the best iteration with performance within 2% of
the Oracle. If we fail to achieve the target, we continue to perform more
iterations.

Fig. 1.8 shows that the proposed IL-DAgger scheduler performs almost
identical to the Oracle; the mean average percentage difference between
them is 1%. More notably, the gap between the proposed IL-DAgger pol-
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icy and the optimal CPs_,,i, solution is only 9.22%. We emphasize that
CPs5_min is included only as a reference point, but it has six orders of
magnitude larger execution time overhead and cannot be used at run-
time. Furthermore, the proposed approach performs better than CP1_in,
which is not able to find a good schedule within the one-minute time
limit per decision. Finally, we note that the baseline IL can approach the
performance of the proposed policy. This is intuitive since both policies
are tested on known applications in this experiment. This is in contrast to
the leave one out experiments presented in Section 1.1.6.5.
Pulse Doppler Application Case Study: We demonstrate the applicability
of the proposed IL-scheduling technique in complex scenarios using a
pulse Doppler application. It is a real-world radar application, which com-
putes the velocity of a moving target object. This application is significantly
more complex, with 13-64 x more tasks than the other applications. Specif-
ically, it consists of 449 tasks comprising 192 FFT tasks, 128 inverse-FFT
tasks, and 129 other computations. The FFT and inverse-FFT operations
can execute on the general-purpose cores and hardware accelerators. In
contrast, the other tasks can execute only on the general-purpose cores.
The proposed IL policies achieve an average execution time within 2%
of the Oracle. The 2% error is acceptable, considering that the application
saturates the computing platform quickly due to its high complexity. More-
over, the CP-based approach does not produce a viable solution either
with 1-minute or 5-minute time limits due to the large problem size. For
this reason, this application is not included in our workload mixes and the

rest of the comparisons.
1.1.6.5 [Illustration of Generalization with IL for Unseen Applications,
Runtime Variations and Platforms

This section analyzes the generalization of the proposed IL-based schedul-

ing approach to unseen applications, runtime variations, and many-core
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platform configurations.

IL-Scheduler Generalization to Unseen Applications using Leave-one-
out Experiments: IL, being an adaptation of supervised learning for
sequential decision making, suffers from lack of generalization to un-
seen applications. To analyze the effects of unseen applications, we train
IL policies, excluding applications one each at a time from the training
dataset [102].

To compare the performances of two schedulers S; and S,, we use
the job slowdown metric slowdowns, s, = Ts,/Ts,. Slowdownsg, s, > 1
when Ts, > Ts, [63]. The average slowdown of scheduler S; with respect
to scheduler S, is computed as the average slowdown for all jobs at all
injection rates. The results present an interesting and intuitive explanation
of the average job slowdown in execution times for each of the leave-one-

out experiments.
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Figure 1.9: Average slowdown of IL policies in comparison with Oracle
for leave-one-out (LOO) experiments before and after DAgger (Proposed).

Fig. 1.9 shows the average slowdown of the baseline IL (IL-LOO) and
proposed policy with DAgger iterations (IL-LOO-DAgger) with respect to
the Oracle. We observe that the proposed policy outperforms the baseline
IL for all applications, with the most significant gains obtained for WiFi-RX
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Figure 1.10: Average execution time with Oracle, IL-DAgger (all appli-
cations are included for training), IL with one application excluded from
training (IL-LOO) and finally, the leave-one-out policy improved with
DAgger (Proposed IL-LOO-DAgger) technique. The excluded applications
are: (a) WiFi-TX, (b) WiFi-RX, (c) Range Detection (d) Single-Carrier TX
(e) Single-Carrier RX and (f) Temporal Mitigation.

and SC-RX applications. These two applications consist of a Viterbi de-
coder operation, which is very expensive to compute on general-purpose
cores and highly efficient to compute on hardware accelerators. When
these applications are excluded, the IL policies are not exposed to the
corresponding states in the training dataset and make incorrect decisions.
The erroneous PE assignments lead to an average slowdown of more than
2x for the receiver applications. The slowdown when the transmitter
applications (WiFi-TX and SC-TX) are excluded from training is approx-
imately 1.13x. Range detection and temporal mitigation applications
experience a slowdown of 1.25x and 1.54 x, respectively, for leave-one-out
experiments. The extent of the slowdown in each scenario depends on
the application excluded from training and its execution time profile in
the different processing clusters. In summary, the average slowdown of

all leave-one-out IL policies after DAgger (IL-LOO-DAgger) improves to
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Table 1.7: Standard deviation (in percentage of execution time) profiling
of applications in Odroid-XU3 and Zynq ZCU-102.

Application WiFi-TX WiFi-RX RangeDet SC-TX SC-RX TempMit

Zynq ZCU-102 0.34 0.56 0.66 115 1.80 0.63
Odroid-XU3 6.43 5.04 5.43 6.76  7.14 3.14

~1.01x in comparison with the Oracle, as shown in Fig. 1.9.

Fig. 1.10(a)-(f) show the average job execution times for the Oracle
(ETF), baseline-IL, IL with leave-one-out and DAgger for IL with leave-one-
out policies for each of the applications. The highest number of DAgger
iterations needed was 8 for SC-RX application, and the lowest was 2 for
range detection application. If the DAgger criterion is relaxed to achieving
a slowdown of 1.02x, all applications achieve the same in less than 5
iterations. A drastic improvement in the accuracy of the IL policies with
few iterations shows that the policies generalize quickly and well to unseen
applications, thus making them suitable for applicability at runtime.
IL-Scheduler Generalization with Runtime Variations: Tasks experience
runtime variations due to variations in system workload, memory, and
congestion. Hence, it is crucial to analyze the performance of the proposed
approach when tasks experience such variations, rather than observing
only their static profiles. Our simulator accounts for variations by using a
Gaussian distribution to generate variations in execution time [106]. To
allow evaluation in a realistic scenario, all tasks in every application are
profiled on big and LITTLE cores of Odroid-XU3, and, on Cortex-A53
cores and hardware accelerators on Zynq for variations in execution time.

We present the average standard deviation as a ratio of execution time
for the tasks in Table 1.7. The maximum standard deviation is less than 2%
of the execution time for the Zynq platform, and less than 8% on the Odroid-
XU3. To account for variations in runtime, we add a noise of 1%, 5%, 10%,

and 15% in task execution time during simulation. The IL policies achieve
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average slowdowns of less than 1.01 x in all cases of runtime variations.
Although IL policies are trained with static execution time profiles, the
aforementioned results demonstrate that the IL policies adapt well to
execution time variations at runtime. Similarly, the policies also generalize
to variations in communication time and power consumption.

IL-Scheduler Generalization with Platform Configuration: This section
presents a detailed analysis of the IL policies by varying the configuration
i.e., the number of clusters, general-purpose cores, and hardware accelera-
tors. To this end, we choose five different SoC configurations presented
in Table 1.8. The Oracle policy for a configuration G1 is denoted by 7*¢!.
An IL policy evaluated on configuration G1 is denoted as 7¢'. Gl is
the baseline configuration that is used for extensive evaluation. Between
configurations G1-G4, we vary the number of PEs within each cluster.
We also consider a degenerate case that comprises only LITTLE and big
clusters (configuration G5). We train IL policies with only configuration

G

G1. The average execution times of 7!, 762, and 7®? are within 1%, ¢*

performs within 2%, and 7t° performs within 3%, of their respective Ora-
cles. The accuracy of > with respect to the corresponding Oracle (7*¢°)
is slightly lower (97%) as the platform saturates the computing resources

very quickly, as shown in Fig. 1.11.

Table 1.8: Configuration of many-core platforms.

Platform LITTLE big MatMul FFT Decoder

Config. PEs PEs Acc. PEs Acc. PEs Acc. PEs
G1 (Baseline) 4 4 2 4 2
G2 2 2 2 2 2
G3 1 1 1 1 1
G4 4 4 1 1 1
G5 4 4 0 0 0

Based on these experiments, we observe that the IL policies generalize
well for the different many-core platform configurations. The change in
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Figure 1.11: IL policy evaluation with multiple many-core platform con-
figurations. IL policies are trained with only configuration G1.

system configuration is accurately captured in the features (in execution
times, PE availability times, etc.), which enables us to generalize well to
new platform configurations. When the cluster configuration in the many-
core platform changes, the IL policies generalize well (within 3%) but
can also be improved by using DAgger to obtain improved performance
(within 1% of the Oracle).

1.1.6.6 Performance Analysis with Multiple Workloads

To demonstrate the generalization capability of the IL policies trained and
aggregated on one workload (IL-DAgger), we evaluate the performance of
the same policies on 50 different workloads consisting of different combi-
nations of application mixes at varying injection rates, and each of these
workloads contains 500 frames. For this extensive evaluation, we con-
sider workloads each of which are intensive on one of WiFi-TX, WiFi-RX,
range detection, SC-TX, SC-RX, and temporal mitigation. Finally, we also
consider workloads in which all applications are distributed similarly.
Fig. 1.12 presents the average slowdown for each of the 50 different
workloads (represented as W-1, W-2 and so on). While W-22 observes a
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Figure 1.12: Comparison of average job slowdown normalized with IL-
DAgger (Proposed) policies against the Oracle for 50 different workloads.
The slowdown of IL-DAgger policies are shown for workloads with differ-
ent intensities of each application in the benchmark suite.

slowdown of 1.01x against the Oracle, all other workloads experience an
average slowdown of less than 1.01x (within 1% of Oracle). Independent
of the distribution of the applications in the workloads, the IL policies
approximate the Oracle well. On average, the slowdown is less than
1.01x, demonstrating the IL policies generalize to different workloads and

streaming intensities.

1.1.6.7 Evaluation with Energy and Energy-Delay Objectives

Average execution time is crucial in configuring computing systems for
meeting application latency requirements and user experience. Another
critical metric in modern computing systems, especially battery-powered
platforms, is energy consumption [67, 80]. Hence, this section presents the
proposed IL-based approach with the following objectives: performance,
energy, energy-delay product (EDP), and energy-delay? product (ED?P).
We adapt ETF to generate Oracles for each objective. Then, the different
Oracles are used to train IL policies for the corresponding objectives. The
scheduling decisions are significantly more complex for these Oracles.
Hence, we use an DT of depth 16 (execution time uses DT of depth 12) to
learn the decisions accurately. The average latency per scheduling decision
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Figure 1.13: (a) Average execution time and (b) average energy consump-
tion of the workload with Oracles and IL policies for performance, energy,
energy-delay product (EDP) and energy-delay? product (ED?P) objec-
tives.

remains similar for DT of depth 16 (~1.1us) on Cortex-A53.

Fig. 1.13(a) and Fig. 1.13(b) present the average execution time and
average energy consumption, respectively, for IL policies with different
objectives. The lowest energy is achieved by the energy Oracle, while
it increases as more emphasis is added to performance (EDP — ED?P
— performance), as expected. The average execution time and energy
consumption in all cases are within 1% of the corresponding Oracles. This
demonstrates the proposed IL scheduling approach is powerful as it learns

from Oracles that optimize for any objective.

1.1.6.8 Comparison with Reinforcement Learning

Since the state-of-the-art machine learning techniques [63, 64 ] do not target
streaming DAG scheduling in heterogeneous many-core platforms, we
implemented a policy-gradient based reinforcement learning technique
using a deep neural network (multi-layer perceptron with 4 hidden layers
with 32 neurons in each hidden layer) to compare with the proposed IL-
based task scheduling technique. For the RL implementation, we vary the
exploration rate between 0.01 to 0.99 and learning rate from 0.001 to 0.01.

The reward function is adapted from [64]. RL starts with random weights
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Figure 1.14: Comparison of average execution time between Oracle, IL,
and RL policies to schedule a workload comprising a mix of six streaming
real-world applications.

and then updates them based on the extent of exploration, exploitation,
learning rate, and reward function. These factors affect convergence and
quality of the learned RL models.

Fewer than 20% of the experiments with RL converge to a stable policy
and less than 10% of them provide competitive performance compared
to the proposed IL-scheduler. We choose the RL solution that performs
best to compare with the IL-scheduler. The Oracle generation and train-
ing parts of the proposed technique take 5.6 minutes and 4.5 minutes,
respectively, when running on an Intel Xeon E5-2680 processor at 2.40
GHz. In contrast, an RL-based scheduling policy that uses the policy gra-
dient method converges in 300 minutes on the same machine. Hence, the
proposed technique is 30 x faster than RL. As shown in Fig. 1.14, the RL
scheduler performs within 11% of the Oracle, whereas the IL scheduler
presents average execution time that is within 1% of the Oracle.

In general, RL-based schedulers suffer from the following drawbacks:
(1) need for excessive fine-tuning of the parameters (learning rate, ex-
ploration rate, and NN structure), (2) reward function design, and (3)
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slow convergence for complex problems. In strong contrast, IL policies are
guided by strong supervision eliminating the slow convergence problem
and the need for a reward function.

1.1.6.9 Complexity Analysis of the Proposed Approach

In this section, we compare the complexity of our proposed IL-based
task scheduling approach with ETF, which is used to construct the Oracle
policies. The complexity of ETF is O(n?m) [42], where n is the number of
tasks and m is the number of PEs in the system. While ETF is suitable for
use in Oracle generation (offline), it is not efficient for online use due to
the quadratic complexity on the number of tasks. However, the proposed
IL-policy which uses decision tree has the complexity of O(n). Since the
complexity of the proposed IL-based policies is linear, it is practical to
implement in heterogeneous many-core systems.

1.1.7 Conclusions

Efficient task scheduling in heterogeneous many-core platforms is crucial
to improve the system performance, but is very challenging due to its
NP-hardness. In this work, we have presented an imitation learning based
approach for task scheduling in many-core platforms executing streaming
applications from wireless communications and radar systems. We have
presented a hierarchical imitation learning framework that learns from
an Oracle to develop task scheduling policies to minimize the execution
time of applications. The framework has been evaluated comprehensively
with six domain-specific applications and analyzed the storage and la-
tency overheads of the IL policies. We have shown that the IL policies
approximate the Oracle better than 99%. The overhead of the policies are
significantly low at 1.1us latency per scheduling decision and lower than

the completely fair scheduler (1.2us). Our IL policies achieve application
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execution times within 9.3% of optimal schedules obtained offline using
constraint programming. Preliminary experiments in which we have used
IL to bootstrap RL for task scheduling in heterogeneous many-core plat-
forms, show much faster convergence to optimal policies. We envision this
work to initiate a new direction in scheduling studies with optimal Oracle

generation and evaluation with applications from various domains.
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1.2 Evaluation Frameworks for DSSoCs

1.2.1 Introduction

With the saturation of Moore’s Law and emergence of new workloads,
the ability of traditional homogeneous processors and single-ISA hetero-
geneous multicore architectures to satisfy the power and performance
requirements of applications has saturated. Specialized and targeted im-
plementations on graphical processing units (GPUs) and digital signal
processors (DSPs) provide significantly improve the efficiency metrics.
Homogeneous and single-ISA systems provide programming flexibility
at the cost of energy efficiency, while special-purpose solutions trade-off
computational efficiency for flexibility. Domain-specific system-on-chip
(DSSoC) architectures, which are a realization of an advanced heteroge-
neous architectures, bridge the gap between programming flexibility and
energy efficiency by smartly combining general-purpose, special-purpose
and hardware accelerator cores. The special-purpose and hardware accel-
erator cores in DSSoCs strive to maximize the energy efficiency of appli-
cations in a targeted domain, and the general-purpose cores provide the
programming flexibility of applications from unknown domains.

SoC architectures, and in particular DSSoCs, face monumental design
and verification efforts due to rapidly increasing design sizes and com-
plexity. For instance, Intel 4004 (the world’s first microprocessor) uses
merely 2300 transistors, and this number grew to 7.5 million transistors
in Intel Pentium 2, and to 57 billion transistors in the Apple M1 Pro Max
SoC [71, 30]. Designs also include multiple power domains to reduce
the power consumption by utilizing techniques such as voltage scaling
and power gating. For example, the Arm Cortex-A72 processor uses 4-8
power domains, and the Xilinx Zynq Ultrascale+ ZCU102 uses ~10 power
rails [1, 6]. Furthermore, to facilitate clock isolation, gating and different

frequencies, SoC designs use several clock domains thereby increasing
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design complexity due to clock synchronization and domain-crossing
protocols. DSSoCs also integrate several tens of IPs, and honoring the
power, performance, interface and design constraints further convolute
the design cycle [38]. Therefore, the design complexity and size of DSSoCs
pose critical threats to design and verification life cycle, planning, cost,
man effort, tools and time to market.

Functional and performance bugs and failures in these complex chips
post fabrication result in unprecedented costs. The infamous Intel float-
ing point divider failure (Pentium FDIV bug) forced Intel to recall the
defective chips and resulted in a cost of $475 million [77]. More recently,
two security vulnerabilities namely Meltdown and Spectre have initiated
many lawsuits against major technology giants [2]. To circumvent the
post-silicon bug and failure challenges, stringent pre-silicon verification
techniques such as RTL simulation, gate-level simulation, formal verifica-
tion, FPGA emulation and prototyping frameworks are used to identify
and rectify bugs in the early design stages.

Simulation frameworks are extensively used for design validation and
span across multiple stages of the design cycle. First, performance es-
timating simulation frameworks employ analytical models, transaction
level modeling and bus functional models at the early design stages when
microarchitects and hardware designers iterate to establish a baseline ar-
chitecture. The accuracy of performance estimation critically relies on the
accuracy of the analytical and functional models, which are typically im-
proved over multiple iterations of the design. Second, hardware designers
use RTL simulations for functional validation of the design. RTL simula-
tions are highly suitable for design sizes that simulation and verification
tools comfortably handle today. However, the tools demand tremendously
high computing capacity for large designs (give example) while resulting
in unreasonable simulation times (several days for few milliseconds of

application simulation). Finally, gate-level simulations, which simulate
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post-synthesis or post automatic, place and route (APR) netlists, are sev-
eral orders of magnitude slower (give number from reference). Therefore,
simulation techniques do not scale well with larger designs due to the
challenges described above, and are utilized only for partitions of SoC
designs.

Prototyping and emulation on FPGAs is highly promising as it al-
lows orders of magnitude (four orders of magnitude) faster run-times
for validation of the entire system at marginally higher development ef-
forts [56,41,9]. A majority of works in literature utilize FPGA emulation to
validate SoCs and evaluate key performance indicators [15, 86, 27]. Apart
from better validation run-times, FPGA prototyping offers the following
advantages: (1) Enables execution of real-world workload scenarios that
otherwise consume unrealistic time and computational power for simula-
tion, (2) enables full-system validation, (3) allows for early pre-fabrication
firmware and software development, (4) improves the confidence of func-
tional validation and performance indicators, and (5) improved time-to-
market cycles. The use of rich and diverse processing elements in DSSoCs
significantly increases the firmware and software development, apart from
the design complexity.

1.2.2 Related Work

There are a large number of works on design space exploration for em-
bedded systems, but they are found to be lacking in support for rich
scheduling, thermal, and power optimization algorithms. Khalilzad et
al. [45] consider a heterogeneous multiprocessor platform along with
applications modeled as synchronous dataflow graphs and periodic tasks.
The design space exploration problem is solved using a constraint pro-
gramming solver for different objectives such as deadline, throughput,
and energy consumption. ASpmT [69] proposes a multi-objective tool
using Answer Set Programming (ASP) for heterogeneous platforms with
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a grid-like network template and applications specified as directed acyclic
graphs (DAGs). Trcka et al. [97] utilize the Y-chart [48] philosophy for
design space exploration and introduces an integrated framework using
the Octopus toolset [18] as its kernel module. Then, for different steps in
the exploration process (i.e., modeling, analysis, search, and diagnostics),
different languages and tools such as Ptolemy, Uppaal, and OPT4] are
employed. Target platforms and applications are modeled in the form
of an intermediate representation to support translation from different
languages and to different analysis tools. Artemis [76] aims to evaluate
embedded-systems architecture instantiations at multiple abstraction lev-
els. Later, authors extend the work and introduce the Sesame framework
[75] in which target multimedia applications are modeled as Kahn Pro-
cess Network (KPN) written in C/C++. Architecture models, on the
other hand, include components such as processor, buffers, and buses and
are implemented in SystemC. The framework supports different sched-
ulers such as first in, first-out (FIFO), round-robin, or customized. A
trace-driven simulation is applied for cosimulation of application and
architecture models.

Finally, ReSP [20] is a virtual platform targeting multiprocessor SoCs fo-
cusing on a component-based design methodology utilizing SystemC and
transaction-level modeling libraries. ReSP adopts lower-level instruction
set based simulation approach and is restricted to applications imple-
mented in SystemC. All aforementioned frameworks or tools lack accurate
power and thermal models, and do not support for exploration of schedul-
ing algorithms and power-thermal management techniques. Several FPGA
based emulation frameworks have also been designed to accelerate com-
plex simulations, and also to prototype heterogeneous SoCs [56, 89, 86].

Outside of embedded systems, there has also been a large body of work
on design space exploration via heterogeneous runtimes at the desktop or
HPC scale, with StarPU [16] being one of the most prominent examples
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of such a runtime. StarPU is a comprehensive framework that provides
the ability to perform run-time scheduling and execution management
for DAG based programs on heterogeneous architectures. Although, the
framework allows users to develop new scheduling algorithms, StarPU
lacks power-thermal models and DVFS techniques to optimize power and
energy consumption. A recent work [107] targets domain-specific pro-
grammability of heterogeneous architectures through intelligent compile-
time and run-time mapping of tasks across CPUs, GPUs, and hardware
accelerators. In the proposed approach, the authors employ four different
simulators, more specifically, Contech to generate traces, MacSim to model
CPU/GPU architectures, BookSim2 to model the networks-on-chip, and
McPat to predict energy consumption. The proposed DS3 simulator inte-
grates the above features in a unified framework to benefit similar studies
in the future. The FPGA framework is a full system solution to prototype

general-purpose cores, accelerators, software, drivers and firmware.

1.2.3 DS3: Domain-Specific System-on-Chip Simulation

Framework

In this section, we present DS3, a system-level domain-specific system-
on-chip simulation framework. DS3 framework enables (1) run-time
scheduling algorithm development, (2) DTPM policy design, and (3)
rapid design space exploration. To this end, DS3 facilitates plug-and-play
simulation of scheduling algorithms; it also incorporates built-in heuristic
and table-based schedulers to aid developers and provide a baseline for
users. DS3 also includes power dissipation and thermal models that enable
users to design and evaluate new DTPM policies [87]. Furthermore, it
features built-in dynamic voltage and frequency scaling (DVES) governors,
which are deployed on commercial SoCs. Besides providing representative
baselines, this capability enables users to perform extensive studies to
characterize a variety of metrics, PPW and EDP for a given SoC and set of
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Figure 1.15: Organization of DS3 framework describing the inputs and
key functional components to perform rapid design space exploration and
validation.

applications. Finally, DS3 comes with six reference applications from wireless
communications and radar processing domain. These applications are
profiled on heterogeneous SoC platforms, such as Xilinx ZCU102 [7] and
Odroid-XU3 [4], and included as a benchmark suite in DS3 distribution.

The goal of DS3 is to enable rapid development of scheduling algo-
rithms and DTPM policies, while enabling extensive design space explo-
ration. To achieve these goals, it provides:

e Scalability: Provide the ability to simulate instances of multiple applica-
tions simultaneously by streaming multiple jobs from a pool of active
domain applications.

e Flexibility: Enable the end-users to specify the SoC configuration, target
applications, and the resource database swiftly (e.g., in minutes) using
simple interfaces.
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e Modularity: Enable algorithm developers to modify the existing schedul-

ing and DTPM algorithms, and add new algorithms with minimal effort.

e User-friendly Productivity Tools: Provide built-in capabilities to collect,
report and plot key statistics, including power dissipation, execution

time, throughput, energy consumption, and temperature.

Overview of the DS3 Framework: The organization of the DS3 frame-
work designed to accomplish these objectives is shown in Figure 1.15. The
resource database contains the list of PEs, including the type of each PE, ca-
pacity, operating performance points (OPP), among other configurations.
By exploiting the deterministic nature of domain applications, the pro-
filed latencies of the tasks are also included in the resource database. The
simulation is initiated by the job generator, which generates application
representative task graphs. The injection of applications in the framework
is controlled by a random exponential distribution. The DS3 framework
invokes the scheduler at every scheduling decision epoch with the list
of tasks ready for execution. Then, the simulation kernel simulates task
execution on the corresponding PE using execution time profiles based on
reference hardware implementations. Similarly, DS3 employs analytical
latency models to estimate interconnect delays on the SoC [61]. After
each scheduling decision, the simulation kernel updates the state of the
simulation, which is used in subsequent decision epochs. In parallel, DS3
estimates power, temperature and energy of each schedule using power
models [21]. The framework aids the design space exploration of dynamic
power and thermal management techniques by utilizing these power mod-
els and commercially used DVFS policies. DS3 also provides plots and
reports of schedule, performance, throughput and energy consumption to
help analyze the performance of various algorithms.

The life cycle of a task in DS3 is shown in Figure 1.16. The job generator
constructs a task graph for each application. The tasks that are ready to
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Figure 1.16: Life-cycle of a task in DS3 queues.

execute (i.e. free of dependencies) are moved to a Ready Queue. The other
tasks that are waiting for predecessors to complete execution are held
in the Outstanding Queue before being moved to the Ready Queue. The
scheduler, an algorithm either built-in or user-defined, uses the resource
database and produces PE assignments for ready tasks. Then, the simula-
tion kernel migrates the tasks to the Executable Queue until communication
requirements from predecessors are met. Finally, the task is simulated
on the PE and retired after execution. The simulation kernel clears the
dependencies imposed by these tasks and removes them from the system.
If all the predecessors of a task waiting in the Outstanding Queue retire,
the kernel moves them to the Ready Queue. This triggers a new scheduling
decision and the tasks experience a similar life cycle in the framework, as

described above. Memory and network are shared resources in an SoC.
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The communication fabric performing high-speed data transfers among
the various resources of the platform is assumed to be a mesh-based
network-on-chip (NoC). We integrate analytical models to compute the
latency at a given traffic load in a priority-aware mesh-based industrial
NoC [60]. Executing multiple applications simultaneously leads to higher
traffic in the network, as compared to the standalone execution. Hence, we
account for the effect of a congestion in the network on execution time of
applications. To model memory communication in the SoC, we include a
bandwidth-latency model for memory latency modeling based on DRAM-
Sim2 [81]. DRAMSIm? is used to obtain memory latencies at varying
bandwidth requirements. DS3 models the transactions between the var-
ious communicating elements and keeps track of outstanding memory
requests in a sliding window. We compute the memory bandwidth based
on outstanding requests and then utilize the bandwidth-latency curve
as a look-up table to obtain the average latency for the current memory
bandwidth and add it to the execution time of the application(s). Hence,
we account for contention of shared resources using the described network
and memory models.

DS3 comes with six reference applications from wireless communications
and radar processing domain: WiFi Transmitter (TX), WiFi Receiver (RX),
low-power single-carrier TX, single-carrier RX, radar and pulse doppler.
The WiFi protocol consists of compute-intensive blocks, such as FFT, modu-
lation, demodulation, and Viterbi decoder (see Table 1.9), which require a
significant amount of system resources. When the bandwidth and latency
requirements are small, one can use a simpler single carrier protocol to
achieve lower power consumption. Finally, we include two applications
from the radar domain as part of the benchmark application suite - (1)
range detection and (2) pulse Doppler (see Table 1.9).

The benchmark applications enable various algorithmic optimizations

and realistic design space exploration studies, as we demonstrate in this



51

section. We will continuously include applications from other domains to
the benchmarks. To demonstrate the capabilities of DS3, we use a typical
heterogeneous SoC with a total of 16 general-purpose cores and hardware
accelerators: 4 big Arm Cortex-A15 cores, 4 LITTLE Arm Cortex-A7, and
2 scrambler, 4 FFT, and 2 Viterbi decoder accelerators. We schedule and
execute the WiFi TX/RX, range detection and pulse Doppler task flow
graphs using DS3 and plot the average job execution time trend with
respect to the job injection rate, as shown in Figure 1.17. We use the
parameters prx, PTx, Prange, and Ppuise representing the probabilities for
the new job being WiFi-RX, WiFi-TX, range detection and pulse Doppler,
respectively.

Figures 1.17(a) and (b) depict the results with WiFi applications for
a download and upload intensive workload, independently. To under-
stand the performance of scheduling algorithms, we analyze the average
execution time at varying rates of job injection. We use three different
schedulers for evaluation: (1) Minimum execution time (MET), (2) In-
teger linear programming (ILP), and (3) earliest task first (ETF). The
minimum execution time is a low-overhead list-based scheduler which
simply schedules a task to a resource that can execute it in the lowest
amount of time. The ETF scheduler executes a task on a resource that
also executes the task in the shortest amount of time, but it also takes into
account the communication overheads from the predecessor tasks, and
the availability of the resources. An ILP scheduler solves an optimization
problem for one application with average execution time as the objective
and takes into account all the constraints in the system such as the directed
acyclic graph precedence constraints and heterogeneity constraints. It
uses a static table-based schedule which is optimal for one job instance.
At low injection rates (less than 1job/ms), ILP is suitable as jobs do not
interleave. However, as the injection rate increases, the ILP schedule is

not optimal. ETF scheduler is superior in comparison to the others, as
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observed in Figures 1.17(a),(b).
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Figure 1.17: Results from different schedulers with a workload consist-
ing of (a) WiFi-TX (prx=0.2) and WiFi-RX (prx=0.8), (b) WiFi-TX
(prx=0.8) and WiFi-RX (prx=0.2), (c) range detection (pPrange=0.8) and
pulse Doppler (ppuise=0.2), (d) WiFi-TX (prx=0.3), WiFi-RX (prx=0.3),
range detection (Prange=0.3), and pulse Doppler (ppuise=0.1).

Figure 1.17(c) demonstrates the results for a workload comprising
radar benchmarks. This workload uses prange = 0.8 and ppuise = 0.2,
owing to the difference in execution times of the two applications. The
performance of ETF and ILP schedulers are similar until 5 jobs/ms, follow-
ing which performance of ETF is superior in comparison to ILP. Although
the trend in execution time for radar benchmarks is similar to WiFi, the
job injection rate at which ETF and ILP diverge is different because of the
differences in execution times of these applications. At an injection rate
lower than 5 jobs/ms, the level of interleaving of jobs is low which aligns
with the ILP solution.

Finally, we construct a workload comprising of four applications and
Figure 1.17(d) shows the corresponding results. The performance trend of
the schedulers with all applications is similar to WiFi and radar workloads.
MET considers only the best performing PEs for mapping and ILP is sub-
optimal at high injection rates whereas ETF utilizes the state information
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of all PEs for mapping decisions. In summary, the experiments presented
in Figure 1.17 demonstrate the capabilities of the simulation environment.
DS3 allows the end user to evaluate workload scenarios exhaustively by
sweeping the prx, Prx, Prange and ppuise configuration space to determine
the scheduling algorithm that is most suitable for a given SoC architecture
and set of workload scenarios. Readers may look into [14] for further
details of DS3.

[ would like to thank the collaborators — Samet Arda (Arizona State
University), Alper Goksoy (University of Wisconsin-Madison), Nirmal
Kumbhare (University of Arizona), Joshua Mack (University of Arizona),
Anderson Sartor (Carnegie Mellon University), and Xing Chen (Arizona
State University) for their contributions towards this work.

1.24 FALCON: An FPGA Emulation Platform for
Domain-Specific Systems-on-Chip (DSSoCs)

In literature, FPGAs have extensively been used for network-on-chip (NoC)
emulation, SoC prototyping and performance evaluation of novel special-
purpose architectures. However, there does not exist an end-to-end frame-
work for emulation and prototyping of DSSoCs. To address these chal-
lenges, we propose an end-to-end FPGA based emulation framework for
prototyping and performance evaluation of DSSoCs. Since DSSoCs inte-
grate a number of compute and on-chip elements such as general-purpose
cores, special-purpose cores, hardware accelerators, caches and intercon-
nect, it is crucial to ensure the different aspects such as hardware, software,
firmware and drivers are well validated before the chip fabrication to avoid
the expensive cost of identifying post-silicon bugs and failures. To maxi-
mize the energy efficiency, microarchitects and designers typically prefer
to iterate over multiple versions of hardware architectures for a particu-
lar task, as well as accelerators for different tasks in the applications. To
simplify the development process, the framework includes an accelerator
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sandbox which standard AMBA based interfaces to the rest of the DSSoC.
The accelerator sandbox critically improves the productivity of developers
by providing a plug-and-play environment to include, remove and modify
hardware accelerators, thereby improving the design time cycles by several
orders of magnitude. While the performance of hardware accelerators can
be analyzed standalone, the proposed emulation framework allows their
evaluation from the full system perspective where cache, memory and
interconnect behaviors can strongly influence their key performance indi-
cators. Hardware accelerators define their own interfacing mechanisms to
the rest of the SoC, and also provide their programming sequence. The
proposed framework also allows DSSoC designers to develop drivers for
such non-standard ISA designs before the chip becomes available. Finally,
the framework also enables software and firmware development which
include aspects such as the boot firmware, operating system bundles and

device management.
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Figure 1.18: An overview of the key components and organization of the
FALCON framework for DSSoC emulation.
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This section presents FALCON’s full-system architecture for DSSoC
design and emulation, as outlined in Figure 1.18. Broadly, FALCON com-
prises the hardware platform and the software stack. While these com-
ponents are typical in any SoC, DSSoCs are highly customized to include
specialized processing elements and optimized runtime frameworks to
maximize the energy-efficiency of domain applications, and are described
in the later portions of this section. The hardware platform integrates
general-purpose cores that offer programmability, hardware accelerators
and specialized cores for energy efficiency, a high-speed interconnect for
low-latency on-chip data movement, last-level cache (LLC), peripherals
and debug logic [62]. The entire hardware architecture is packaged a
bitstream to program to the programmable logic on the FPGA after syn-
thesis and automatic place-and-route. The software stack which comprises
the Linux operating system (OS) kernel, filesystem and embedded sys-
tem software components such as the boot firmware and U-boot. All the
components in the software stack are integrated and built into a software
image, which is programmed to the flash memory on the FPGA. Applica-
tions can be executed on the underlying hardware of the DSSoC with the
use of software runtimes such as CEDR and SPARTA [57].

As we emphasized earlier, FALCON enables the evaluation of resource
management algorithms, functional validation, early software and firmware
development. Furthermore, it also allows us to obtain realistic estimates
of DSSoC performance that we can use to calibrate the power and perfor-
mance estimates used in DS3 for high-level design space exploration. To
this end, FALCON allows us to develop two different paths to move data
between general-purpose cores and hardware accelerators. Convention-
ally, the main memory (DDR) allocates a memory space to server as a
buffer for the core and accelerator to exchange data. Enabling coherency
in the DSSoC improves the chances of the required data to be fetched

from on-chip caches. However, as the size of the data to be moved in-



56

creases, it fails to sit in the cache, still requiring the need for main memory
accesses. In FALCON, we provision for an on-chip scratchpad memory,
which allows us to minimize the latency spent in sending and receiving
data from the main memory. We present the execution time results for
FFT and matrix multiplication in hardware accelerators that utilize the
two different datapaths, as shown in Figure 1.19. First, enabling coherency
when the data is moved through main memory significantly improves the
latency by ~25% on average. For smaller data movement sizes (128-point
FFT), scratch and main memory based data movement result in similar
latencies. However, as the amount of data to be moved into the accelera-
tor increases (512-point FFT and (4x64) x (64x4) matrix multiplication),
moving the data through the scratchpad results in 20% improvement in
execution time for 512-point FFT and 44% improvement for the matrix
multiplication operation. Therefore, FALCON allows us to obtain realis-
tic performance estimates of the DSSoC, functional validation and early
software development.
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Figure 1.19: A comparison of end-to-end execution time for FFT (various
transform sizes) and matrix multiplication with two different datapaths
(through main memory and through on-chip scratchpad).
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Pandey (University of Wisconsin-Madison), Joshua Mack (University of
Arizona) and Sahil Hassan (University of Arizona) for their contributions
towards this work.

1.2.5 Optimization of Decision Tree Classifiers

Decision trees, traditionally used as machine learning (ML) classifiers in
data mining, are gaining traction in resource management algorithms in
systems-on-chip [91, 87, 50]. A decision tree (DT) is characterized by a tree
with conditional statements at the root and internal nodes, which evaluate
either True or False. Finally, each leaf node denotes an outcome, i.e., the
output decision, as illustrated in Figure 1.20. DTs are control-flow oriented,
with a maximum of D branching instructions for a tree of maximum depth
D. The simple set of conditions make them understandable and easy to
use [91].

function decision_tree :

# Input: FEATURES(Fq,F,,F5)
if Fp < Vy
if Fp < Vy ¢
label =1
else :
label = 2
else :
if F3 < V3 :
True False True False label = 3
else :
label label label label label = 2
=1 =2 =3 =2

return label

Figure 1.20: An illustration of a decision tree of maximum depth 2 (left)
and its corresponding pseudo code for classification (right).

Decision trees are commonly used in applications with widely varying
requirements. While applications, such as data mining and bioinformatics,

use ensembles and classify large datasets, decision trees used for resource
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management in embedded devices target ultra-low latency [91, 87, 50].
DTs can be implemented using both software (using sequential code exe-
cution) and hardware accelerators to satisfy the different requirements.
While hardware architectures offer a high degree of parallelism (hence,
throughput), software approaches provide the following advantages: (1)
re-use of existing CPU cores, (2) avoid the complexity of hardware design
and integration, (3) reduce data movement on the interconnect, and (4)
eliminate data and control handoff overheads between CPU and accelera-
tor. Data mining and bioinformatics applications benefit from the paral-
lelism in hardware implementations since they classify large datasets [91].
In contrast, decision tree classifiers used in resource management applica-
tions use a singular decision tree invoked periodically and target ultra-low
latency (tens of nanoseconds) [87, 50]. Therefore, the nature of the appli-
cation plays a crucial role in selecting between execution in software and
hardware.

This section focuses on DT classifiers used for resource management
applications. While hardware architectures for decision trees have shown
substantial speed-ups over software approaches in the literature, most
approaches do not consider the data transfer overheads between the host
and hardware accelerator [91]. Considering these overheads is crucial
for low-latency applications since the speed-up obtained with hardware
accelerators is a function of the amount of data to be moved [94]. More-
over, the data movement and control overheads may be prohibitively high
(typically in microseconds) to achieve low latency, especially when the
classification operation is a handful of instructions in a software program.
Existing software approaches do not use fixed-point data and also do not
accurately profile code that executes in the order of nanoseconds. Hence,
we propose both hardware and software implementation and optimiza-
tion techniques to accelerate the inference of classification on decision tree
classifiers.
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Pipelined Hardware Architecture for Decision Tree

A tully pipelined hardware accelerator architecture for the decision
tree is presented in Figure 1.21. Each stage of the decision tree requires
one pipeline stage. Currently, we provision for up to 32 input features. The
feature addresses for each stage and the coefficients are stored in a small
internal memory in the pipeline stage. Each stage utilizes the features per
the addresses and performs the computation for each level of the decision
tree. The memory access takes one cycle, and the address computation
takes another cycle, in effect, it is two cycles per pipeline stage. In total, it
is 12 cycles for a decision tree of depth 6, and successive pipeline stages
can operate on different set of input features, pertaining to scheduling
different tasks.

Data input 1
F1 —

True
F2 —— F?<=C %—-{ A=(2'A)+1
F31—
False
A=A +2

FO —>

5-bits 1-bytes
5-bits 1-bytes
128 ... other
(26*9) stages
5-bits | 1-bytes | |
Feature Coefficient

Address
Stage 1

Figure 1.21: Microarchitecture of a pipelined hardware accelerator for
classification using a decision tree classifier.

Latency Analysis of Hardware Architecture: Now, we present a break-
down at the expected performance of the decision tree in hardware. Each
pipeline stage takes 2 cycles, one for memory access and one for compari-
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son and address computation. It is 12 cycles latency within the accelerator
(for a depth of 6), and with full pipelining, the hardware provides an
output every other cycle. Right now, there are up to 32 inputs which are 8
bits each and hence, a total of 256 bits, which has to be sent in two cycles,
since the CMN-600 bus width to the accelerators is 128 bits. To hide the
latency, we send the critical word first such that the hardware pipeline
isn't stalled. The total latency is about 34 cycles considering the latency
within the accelerator, CMN-600 round trip latency and the Arm latency
to dispatch the commands to the accelerator. At a frequency of 1 GHz, the
latency of 34 cycles translates to 34 nanoseconds.
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Figure 1.22: Effect of number of bits on the classification accuracy (Fixed-
point: 4-16 bits, single-precision floating point: 32 bits).
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Figure 1.23: Latencies of decision tree classifiers for varying tree depths
on Arm Cortex-A53, Arm Cortex-A72 and Nvidia Carmel cores with (a)
scalar processing using 8-bit data, (b) scalar processing with floating-point
(32-bit) data, and (c) vector processing in NEON using 8-bit data.

Software Optimization Techniques for Decision Tree Classification
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This section describes the software optimization techniques to enhance
the latency of DTs. We use Scikit-learn [74] to design the DTs used in this
work. Then, the sklearn-porter tool translates the rules of the decision
tree to generate a C-language implementation [68], which is our baseline.
Finally, we propose optimization techniques that improve its performance,
listed as follows.

Fixed-point number representation: The inherent robustness in ML models
allows us to reduce computational complexity by using fewer bits for data
representation [54]. We designed a DT optimizer that parses the baseline
C-language implementation to transform the single-precision floating-
point (FP) data types into a parameterized fixed-point representation.
Classification accuracy of ~95% is achieved with an 8-bit data format
with a marginal impact to accuracy, as shown in Figure 1.22. Using 8-bit
numbers reduces the size of the model and, subsequently, the memory
footprint by 75%. This transformation also allows for processing in integer
functional units in the processors, which incur lower latency than FP units.
Transformation of Decision Variable: The default C-code generated by
sklearn-porter uses weighted arrays for the possible output labels. The
final decision label is computed by performing an argmax operation on the
array. This approach has a memory footprint (due to the array) and latency
(due to the argmax operation). Our decision tree optimizer transforms
the weighted array assignments (performs argmax operation) to a single
variable that directly holds the decision label, as shown in Figure 1.20.

Implementation on Arm NEON SIMD co-processor: We exploit the pres-
ence of a tightly coupled vector extension (NEON), available in most Arm-
based processor architectures, to leverage the parallelism they offer [66].
The NEON extension performs SIMD processing on 128-bit registers that
can be fragmented into 16 lanes of 8-bits each. This design choice nicely
fits our 8-bit data format and allows for maximum parallel processing. We

utilize the VCLE instruction to perform up to 16 comparisons simultane-
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ously. The designed decision tree optimizer transforms the C-code into a
NEON-friendly code, and the implementation is outlined in Figure 1.24.
Profiling and Setup: The key functional component in a DT classifier
comprises a handful of instructions. Thus, even high-resolution timers
cannot capture the latency of a single classification call accurately. Hence,
we measure the execution time by repeatedly calling the classifier to obtain
the average time per classification invocation. We use the GCC toolchain
and compile the programs with the -03 flag to enable the highest level of
compiler optimization.
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Figure 1.24: Transformation of sequential decision tree code into NEON-
friendly code for SIMD processing.

Experimental Results of Software Optimization Techniques: We evaluate
the proposed DT classifiers using a dataset for dynamic resource man-
agement of a system-on-chip (SoC) [50, 51]. The dataset comprises task
scheduling decisions for the target SoC that uses 16 processing cores, orga-
nized into five processing clusters. Two clusters consist of Arm big.LITTLE
cores, while the others have signal processing hardware accelerators. The
proposed optimization techniques are evaluated on a DT that schedules
tasks to these clusters. Figure 1.23 presents the latency of the DT classifier
for various tree depths on Arm Cortex-A53 at 1.2 GHz, Arm Cortex-A72
at 1.5 GHz, and Nvidia Carmel cores at 1.9 GHz on Xilinx Zynq Ultra-
Scale+ SoC, Raspberry Pi 4, and Nvidia Jetson Xavier NX, respectively.
The latency improves on average by ~35% by converting 32-bit data (Fig-
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ure 1.23(b)) format to 8-bits (Figure 1.23(a)). The latency for a tree depth
of 4 is similar with scalar processing (18.1 ns) and SIMD processing in
NEON (23.98 ns). However, as tree depths increase, the latency is substan-
tially higher with processing in the NEON co-processor. Upon a detailed
characterization, we observed that data transfer between the scalar core
and the NEON unit contributes to ~60% of the latency. The rest of the
overhead comes from additional comparisons performed to allow any
branch to be taken in the tree. So, for highly control-oriented programs
such as DT classifiers, scalar cores provide better latency due to lower com-
putation and data movement overheads. These results show the critical
need to analyze the interplay between control flow, parallelizable vector
operations, and data movement when designing latency-sensitive kernel
tasks.

Summary of Results: This section presented optimization techniques for
DT classification. The proposed software optimization techniques achieve
lower than 50 ns decision time for trees up to a depth of 12, making
them highly suitable for resource management in embedded devices. Our
experiments also show that the data transfer overhead between a scalar
processor and its tightly coupled vector processor (Arm NEON) belittles
the parallelism that NEON offers. Furthermore, the data transfer and
software programming overheads with a hardware accelerator overshoot
the benefits of special-purpose hardware. We conclude that the proposed
software optimization techniques for decision tree classification provide
the best latencies (< 50ns) for trees of up to depth 12.
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Table 1.9: Execution time profiles of applications on Arm A53 core in Xilinx
ZCU102, Arm A7/A15 cores in Odroid-XU3, and hardware accelerators

Latency (us)

Application Task Zynq Odroid Odroid HW
A53 A7 Al15 Acc.

Scrambler-
Encoder 22 22 10 8

WiFi Interleaver 8 10 4

TX QPSK 15 15 8

Modulation
Pilot Insertion 4 5 3
Inverse-FFT 225 296 118 16
CRC 5 5 3
Match Filter 15 16 5
Payload Extraction 5 8 4
FFT 218 290 115 12

WiFi Pilot Extraction 4 5 3

RX QPSK

Demodulation 7 191 9
Deinterleaver 10 16 9
Decoder 1983 1828 738 2
Descrambler 2 3 2
FFT 30 35 15 6

Pulse Y octor 30 100 35

Doppler Multiplication

Inverse-FFT 30 35 15 6
Amplitude 25 70 40
Computation
FFT Shift 6 7 3
LFM Waveform 20 90 60
Generator

Range FFT 68 150 60 30

Detection Vector

Multiplication 2 75 60
Inverse-FFT 68 150 60 30
Detection 10 20 20
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2 PROPOSED WORK - 1: ONLINE TRAINING OF DECISION

TREE CLASSIFIERS FOR TASK SCHEDULING IN DSSOCS

DSSoCs comprise a vast number and type of computing resources on-
chip and the ability to efficiently exploit their potential at run-time to
execute multiple simultaneous applications raises the need for efficient
task scheduling. For instance, a feature detection algorithm in autonomous
driving applications can be executed by both GPU and a detection accel-
erator. However, its actual execution resource is determined by several
run-time parameters such as its execution time profile on different re-
sources, resource utilizations and their earliest availability. Several task
scheduling algorithms explore the wide search space offline to find the
most efficient execution resource for a given task either by solving opti-
mization problems, utilizing heuristic approaches or machine-learning
techniques [47, 96, 50].

Task scheduling policies designed offline [47, 96] are typically opti-
mized to a particular optimization objective (such as performance or en-
ergy consumption), SoC configuration and set of applications. However,
SoC architectures, applications and hardware accelerators are rapidly
evolving to adapt to the performance and energy efficiency needs of
DSSoCs. For instance, SoC designers and developers analyze new ap-
plications in a particular domain and identify the need for new hardware
accelerators and special-purpose processors to improve the energy effi-
ciency of domain applications [28, 79]. The newer 5G applications pose
higher performance hardware requirements to provide high-speed wire-
less data transfers [100], than other domain applications such as single-
carrier and WiFi. Furthermore, SoC architects update the general-purpose
cores in SoCs frequently as they continue to evolve rapidly incorporating
novel microarchitectures and technology process nodes [46]. Newer mi-

croprocessor cores differ in power and performance characteristics than
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their previous generation counterparts thereby rendering the scheduling
policies developed for the previous generations obsolete. SoCs are also
used in conflicting optimization objective requirements such as perfor-
mance, power and energy consumption [29]. Therefore, there is a strong
need for scheduling policies in SoCs to be updated to be in-tune with
the evolution of the SoC and the end-user applications, as outlined in
Figure 2.1.
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Figure 2.1: Decision tree based scheduling policies trained offline (top),
and the decision tree updated incrementally for newer generation SoCs,
applications and objectives (bottom).

In our preliminary work on task scheduling using imitation learning
for DSSoCs, the decision tree based scheduling policy must be updated on-
line with change in SoC configuration and applications. In general, online
updates and training are performed using two techniques: (1) analytical
models, and (2) reinforcement learning [58, 64]. In this case, the com-
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plexity in formulating analytical models for a NP-complete problem such
as task scheduling in DSSoCs makes them an unfavorable choice. Rein-
forcement learning (RL) is widely used for online training and adaptation
scenarios [64, 58]. However, there are several complexities in deploying
RL for task scheduling in DSSoCs. First, the design of a reward function is
complex, and plays a crucial role in the rate of convergence with RL [58].
Second, the state space required to accurately represent the system state
is extremely large for a DSSoC dealing with streaming job arrivals and a
large number of processing elements, and converging towards the optimal
solution involves impractical runtimes [50]. Finally, decisions trees are
typically trained in entire batches of datasets, unlike neural networks that
use stochastic gradient to incrementally update the weights of the network.
While the last challenge can be solved by utilizing differentiable decision
trees [3], the rest of the challenges make RL a practically less feasible

solution for online training of decision trees.

Algorithm 3: Algorithm for Training of Decision Tree Classifiers

1 best_gain =0
2 foreach node n in tree do

3 foreach f € Fdo
4 foreach unique value v of f in dataset do
5 Gini score, G ¢ =1 - Zfzo P?
6 Information gain/ In,f = Gn,f - Gn,f,true?branch - Gn,f,false?branch
7 if G,r < best_gain then
8 best_info_gain = Gy ¢
9 best_feature = f
10 best_threshold = v
11 end
12 end
13 if best_info_gain = 0 or maximum depth reached then
14 | Terminate that branch of tree
15 end
16 end
17 end

18 Employ decision tree pruning techniques to reduce the number of decision
nodes and branches
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To address the above described challenges, we propose to develop an
algorithm to incrementally update decision trees. We denote the original
training data as X,,i4y and the corresponding tree trained with this data
as Torig. After we obtain 7,14, we receive an incremental training dataset
denoted by Xin.. The full dataset is marked by X1, where X, 11 =
Xorig U Xinc. Let the tree trained with full dataset X, be called T*.
We propose an algorithm to achieve 7%, given that we use T,,i4 as the
starting point and only using Xi,.. The incremental training approach
exploits the information embedded into the tree when trained with X,i4.
Furthermore, we embed additional information to the tree to allow us to
achieve identical trees with only incremental training. To understand this
process better, let us understand the training algorithm of a decision tree.
From Algorithm 3, we understand that the Gini score and information
gain of each node in the decision tree is computed using every unique
value of every feature in the dataset, demanding that the tree is trained
only as an entire batch. To modify this algorithm to allow for incremental
training, we propose to store meta-information comprising a small subset
of Gini scores, features and thresholds. The meta-information may be
exploited in future training iterations which contain incremental data for
which the decision tree needs to be updated. As part of the proposed work,
we plan to fully evaluate the proposed algorithm along with extensive

experimental results to substantiate the claims.
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3 PROPOSED WORK - 2: AN INTEGRATED
SYSTEM-ON-CHIP AND NETWORK-ON-CHIP POWER

MANAGEMENT TECHNIQUE FOR SOCS

SoCs should be designed to meet aggressive performance requirements
while coping with limited battery capacity, thermal design power, and
real-time constraints. A step in this direction consists of exploiting het-
erogeneity, e.g., using big cores when high performance is needed and
switching to little cores otherwise. Furthermore, DSSoCs integrate special-
purpose and hardware accelerator cores to maximize the energy efficiency
of applications in a specific domain. Techniques such as dynamic voltage-
frequency scaling and power gating can be used at runtime to manage
the power consumption of SoCs. However, the design space of runtime
decisions explodes combinatorially with the number of cores, frequency
levels, and power states. Additionally, DSSoCs serve a wide range of ap-
plications with distinct characteristics and requirements. The extensive
design space and the growing variety of applications demand highly effi-
cient runtime techniques to efficiently manage the power and performance
of DSSoCs [58, 87, 80, 53].

DSSoCs that optimize the on-chip data communication latencies em-
ploy networks-on-chip (NoCs). NoCs offer substantially better latencies
(1 cycle per hop, leading to 5-6 cycle latency for a mesh of upto 4x4) than
older generation crossbar interconnects (around ~100s of cycles) [5, 62].
NoCs achieve the ultra-low latency at the expense of power consumption,
and therefore, there is a strong need for dynamic frequency scaling tech-
niques to minimize the power and energy consumption in NoCs [110, 10].

Several state-of-the-art techniques address the dynamic voltage and
frequency scaling aspects of the processing elements in SoCs and NoCs
independently to minimize the energy consumption at runtime [80, 53,
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110]. In reality, the frequency tuning of the processing elements and NoCs
cannot be separated since application execution is a strong function of
both of these aspects. For instance, lowering only the frequency of the
processing elements forces the NoC to move data on-chip faster than they
are actually required to. On the contrary, NoC operating at a low frequency
makes the processing elements to wait for the data to arrive. Therefore,
there is a strong need for coordinated dynamic voltage and frequency
scaling techniques to jointly minimize the power and energy consumption
with negligible impact to performance.
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Figure 3.1: Plot showing the total SoC power and latency between two
PEs as a function of NoC frequency for synthetic and real workload based
activity. The percentage value in each column denotes the fraction of NoC
power as a function of the SoC power.

To understand the impact of NoC frequency on total SoC power and
worst case latencies between two PEs in the SoC, we sweep the NoC fre-
quencies and obtain latency and power estimates as outlined in Figure 3.1.
We observe that the NoC power reduces by ~3x as the frequency drops



71

from 1 GHz to 250 MHz, with a increase in PE-PE latency from 5 ns to 20
ns. Therefore, we propose to develop an integrated SoC and NoC DVFS
technique to exploit the potential of DSSoCs while minimizing the energy
consumption. As emphasized earlier, the design space of runtime deci-
sions is large if we consider tuning the frequency of only the PEs. The
problem is further complicated by adding the NoC to the design space.
To explore this vast space efficiently, we propose to utilize Monte Carlo
tree search algorithms together with reinforcement learning to obtain the
optimal runtime frequencies that minimize the overall power and energy
consumption of SoCs and NoCs.
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4  CONCLUSION OF THE REPORT

In this report, we introduce the need for DSSoCs to overcome the limita-
tion of today’s hardware in maximizing energy efficiency. While DSSoCs
integrate a number of general-purpose, special-purpose and hardware
accelerator cores to accelerate applications in a specific domain, there is a
critical need for efficient scheduling techniques to manage the resources at
runtime and exploit the potential of DSSoCs. Task scheduling in DSSoCs
is key to improve the system performance but is very challenging due to
its NP-hardness. In this report, we presented an imitation learning based
approach for task scheduling in many-core platforms executing streaming
applications from wireless communications and radar systems. We have
presented a hierarchical imitation learning framework that learns from
an Oracle to develop task scheduling policies to minimize the execution
time of applications. The framework is evaluated comprehensively with
six domain-specific applications and analyzed the storage and latency
overheads of the IL policies. We showed that the IL policies approximate
the Oracle better than 99%. Our IL policies achieve application execution
times within 9.3% of optimal schedules obtained offline using constraint
programming. Furthermore, we propose optimization techniques for de-
cision tree classification and achieve a latency of less than 50 nanoseconds
for trees up to a depth of 12, making them highly suitable for resource
management in embedded devices.

The design and development phase of DSSoCs raises the strong need
for tools, evaluation and emulation frameworks to explore the vast design
space, evaluate scheduling algorithms and functionally validate them. To
address this challenge, we presented DS3, a Python-based open-source
system-level framework for rapid design space exploration of domain
specific SoCs. We developed a scalable, modular, and flexible simulation

framework to evaluate scheduling algorithms, dynamic power-thermal
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management techniques and architecture exploration. We also presented
benchmark applications, built-in scheduling algorithms and DVFS poli-
cies which can be used as reference by users and developers. Finally, the
framework is thoroughly validated against a commercial SoC, asserting
the fidelity of the simulator to successfully simulate domain-specific SoCs.
We also developed FALCON, a FPGA based emulation platform that de-
ploys general-purpose cores, hardware accelerators and a mesh-based
network-on-chip interconnect. Together with software runtime frame-
works, FALCON can be used to implement efficient scheduling techniques
and maximize the energy efficiency of domain applications.

As future work, we plan to explore techniques to update decision tree
classifiers online to adapt to evolving applications, SoC configurations
and new optimization objectives. Another area of focus is to develop
integrated dynamic power management techniques that utilize voltage
and frequency scaling to minimize power and energy consumption with

negligible impact to application performance.
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