
In-Memory Computing based Acceleration: Large-Scale to Edge Computing

By

Ahmet Alper Goksoy

A preliminary report for the degree of

Doctor of Philosophy

(Department of Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Preliminary Examination Date: 06/01/2023

Preliminary Exam Committee:
Umit Y. Ogras, Associate Professor, Electrical and Computer Engineering, University of

Wisconsin-Madison
Yu Hen Hu, Professor, Electrical and Computer Engineering, University of Wisconsin-

Madison
Younghyun Kim, Assistant Professor, Computer Sciences, University of Wisconsin-

Madison
Chaitali Chakrabarti, Professor, Electrical, Computer and Energy Engineering, Arizona

State University

© Copyright by Ahmet Alper Goksoy 2023
All Rights Reserved

i

Dedicated to my son, my parents Ayşe Gülnihal and Ismail Hakkı,
my brother Osman Gökalp, and my wife Betül.

ii

contents

Contents ii

List of Tables iv

List of Figures v

Abstractviii

1 Introduction 1

2 Literature Review 10
2.1 Chiplet-based Architectures 10
2.2 Home-based Rehabilitation Systems 12
2.3 Task Scheduling Techniques for Heterogeneous Architectures 14

3 Big-Little Chiplets for In-Memory Acceleration of DNNs: A Scalable Het-
erogeneous Architecture 17
3.1 Overall Architecture 17
3.2 Parameters of the Big-Little Architecture and Mapping 20
3.3 Experimental Evaluation 26

4 Energy-Efficient On-Chip Training for Customized Home-based Rehabili-
tation Systems 38
4.1 Home-Based Rehabilitation System 38
4.2 Experimental Results 43

5 Proposed Work – 1: Communication-Aware Sparse Neural Network Opti-
mization 52

6 Proposed Work – 2: Carbon Footprint Optimization 56

iii

7 Other Work: DAS: Dynamic Adaptive Scheduling for Energy-Efficient
Heterogeneous SoCs 60
7.1 Dynamic Adaptive Scheduling Framework 60
7.2 Experimental Evaluations 65

8 Conclusions and Future Directions 71

Bibliography 74

iv

list of tables

3.1 Set of configurations considered to determine big-little chiplet and NoP
structure. 27

3.2 Performance comparison of each component of a homogeneous (Little
only, Big only) chiplet architecture and the heterogeneous Big-Little
IMC chiplet architecture for VGG-19 on CIFAR-100. 28

3.3 Performance comparison of a homogeneous (Little only, Big only) chiplet
architecture and the heterogeneous Big-Little IMC chiplet architecture
for different DNNs. 30

3.4 Ratio between DRAM energy and compute energy for VGG-16 and VGG-
19 with systems having different number of chiplets (**All weights of
VGG-19 fit on chip with this configuration, significantly reducing the
DRAM energy). 34

3.5 Comparison with other platforms for ResNet-50 on ImageNet (*reported
in [1]). 34

4.1 Random set configurations for experimental evaluations and training
results of the baseline mmWave-CNN model. 44

4.2 Hardware results for mmWave-CNN model inference and training on
Jetson Xavier NX with 2 configurations and our framework with 2 con-
figurations and the speedup comparisons. 128 × 128 and 256 × 256
represent the crossbar array sizes. (P: PHR, J: Jetson) 47

4.3 Hardware results for RGB-CNN inference on Jetson Xavier NX with 6
CPU cores and our framework with 256× 256 crossbars. 50

7.1 Type of performance counters used by DAS framework 60
7.2 Classification accuracies and storage overhead of DAS models with

different machine learning classifiers and features 68

v

list of figures

1.1 Normalized layer-wise activation/weight distribution for (a) ResNet-
50 (ImageNet) and (b) VGG-19 (CIFAR-100). Initial/latter layers are
activation/weight dominated. 2

1.2 IMC utilization for different DNNs using a homogeneous chiplet RRAM
IMC architecture [2] and the proposed heterogeneous big-little chiplet
architecture. The heterogeneous big-little architecture improves the IMC
utilization. 4

2.1 Cross-sectional view of the big-little chiplet-based IMC architecture.
The architecture consists of a little chiplet bank with little chiplets (
connected by an NoP within the interposer and a big chiplet bank with
big chiplets connected by a bridge NoP. NoP properties: 1.5–8mm length,
2–4.5µm pitch, and 0.5–2µm width. 11

3.1 (a) Overview of the big-little chiplet IMC architecture. The little chiplet
bank utilizes smaller chiplets connected by a interposer-based NoP while
the big chiplet bank utilizes bigger chiplets connected by a bridge-based
NoP. Each chiplet utilizes a local DRAM, (b) IMC chiplet architecture
(big and little). Each chiplet consists of an array of IMC tiles and a
dedicated NoP transceiver and router, (c) The little chiplet bank consists
of fewer and smaller tiles while the big chiplet bank consists of more
bigger tiles. Both chiplet structures utilize a mesh-based NoC for on-chip
communication, and (d) Structure of each tile within the big and little
chiplet. It consists of an array of IMC crossbar arrays and associated
peripheral circuits with an interconnect similar to that in [3]. The little
chiplet consists of fewer and smaller IMC crossbars while the big chiplet
has larger and more IMC crossbar arrays. 18

vi

3.2 IMC utilizations for different DNNs across different big-little chiplet-
based RRAM IMC configurations for (a) ResNet-110, (b) ResNet-34, (c)
VGG-19, (d) DenseNet-40. Based on the utilization, we choose crossbar
size of big chiplet as 256×256 and crossbar size of little chiplet as 64×64
(256–64). 28

3.3 Normalized NoP EDP for different bus-widths for VGG-19 and ResNet-
34. The NoP with bus width of 24 for big and 32 for little chiplets (24–32)
shows lowest EDP. 30

3.4 EDAP comparison (log-scale) of the big-little chiplet-based RRAM IMC
architecture to ‘Little only’ and ‘Big only’ chiplet-based RRAM IMC ar-
chitectures. The big-little architecture achieves up to 329× improvement
compared to ‘Little only’ architecture. 33

4.1 Illustration of the target rehabilitation system. The RGB camera is used
only during training to generate the reference joint coordinates when the
initial model is customized to the target user. Once the model that uses
mmWave signals is trained, only the mmWave radar is used for inference. 39

4.2 The architecture of IMC-based hardware accelerator. Feedforward, error
calculation, and weight update stages are performed in the accelerator
tiles whereas the weight gradient calculation is executed in the weight
gradient block. Tiles are connected via NoC. (R: NoC Router) 42

4.3 MPJPE and PA-MPJPE comparisons for all three random sets. Results
show MPJPE and PA MPJPE before customization using 10 subjects
for training and after customization which is customized for each test
subject separately. Parts (a), (b), and (c) represent Set-1, Set-2, and Set-3
results, respectively. As they are randomly split, each plot shows the
results for different subjects. 46

4.4 PA-MPJPE comparisons for the baseline model (Baseline), a customized
model with nonlinear properties (Nonlinear), and a customized model
without nonlinear properties (Ideal) for 10 test subjects from Set-2. . . . 50

vii

5.1 Percentage contribution to inference latency for various networks on
two datasets. The communication latency can take up to 43% of the total
inference latency. 53

5.2 Overview of the proposed approach. It consists of mapping the target
DNN onto the target architecture using latency-aware mapping and
hardware-aware dynamic sparse training. The training process first
replaces the DNN layers with sparse graphs; then, at the end of each
epoch, employs hardware-aware pruning and link addition. Each circle
in the target DNN represents the feature map of DNNs; each link in the
target DNN represents the weights of DNNs. The weights are mapped
onto the in-memory computing (IMC) tiles with the same color as
the corresponding links. The circles and the rectangles in the target
architecture denote the NoC routers and IMC tiles, respectively. 54

6.1 Overview of the proposed framework. Inputs to the framework are
the target network, target architecture, dataset, and location. First, the
training or inference part is performed in the Python wrapper using
the PyTorch library. This wrapper outputs the accuracy based on the
quantization. Then, quantized weights, activations, and gradients are
sent to the IMC simulator. This simulator outputs latency and TOPS.
Then, energy consumption and location information are used by the
carbon footprint tracker for each epoch, outputting the carbon footprint. 58

7.1 Flowchart describing the flow of the DAS framework: Oracle generation,
feature selection, and training a model for the classifier. 62

7.2 Comparison of (a)–(c) average execution time and (d)–(f) EDP between
DAS, LUT, ETF, and ETF-ideal for three different workloads. 66

7.3 Decisions taken by the DAS framework as bar plots and total scheduling
energy overheads of LUT, ETF, and DAS as line plots. 67

viii

abstract

In-memory computing (IMC) based architectures enable energy-efficient inference
and training of machine learning (ML) algorithms. As DNN complexity increases,
the need for larger architectures is inevitable. Monolithic IMC architectures face
yield and fabrication cost challenges because of significant area overhead. Hence,
2.5D/3D architectures are proposed for large-scale DNN accelerators using small
chips (chiplets). Therefore, there is a critical need for research on designing op-
timized architectures for chiplets. In addition, there is an increasing demand to
implement neural networks on mobile edge devices for both on-chip training and
inference following recent developments in Internet of Things (IoT). Nonetheless,
due to the significant computational resources required for training, deploying
neural networks on edge devices with limited resources poses a challenge. The
energy efficiency of IMC accelerators enables system designers to consider this
architecture for edge devices. Therefore, on-chip training and inference using IMC
architectures can enable energy-efficient edge computing. We perform research in
the following areas to address these problems: (i) Big Little Chiplets: We develop
a heterogeneous big-little chiplet-based IMC architecture that utilizes big and little
IMC-based chiplets coupled with an optimal NoP configuration, (ii) On-Chip Train-
ing: We develop a ReRAM-based in-memory computing accelerator for on-chip
training and inference of millimeter Wave (mmWave) CNN and inference of RGB
CNN models for personalized home-based rehabilitation systems.

1

1 introduction

State-of-the-art deep neural networks (DNNs) have become more complex with

deeper, wider, and more branched structures to cater to demanding applications [4,

5]. The growing complexity reduces hardware inference performance due to in-

creased memory accesses and computations [4]. To boost the performance and

energy efficiency, in-memory computing (IMC)-based architectures embed the

matrix-vector-multiplications within the memory arrays [3, 6, 7, 8, 9]. However,

IMC architectures with stationary weights stored on the chip result in significant

area overhead and fabrication cost [2, 3]. Hence, 2.5D/3D architectures are adopted

to design large-scale DNN accelerators using an array of small chips (i.e. chiplets)

connected by a network-on-package (NoP) [10, 11].

Prior studies have demonstrated chiplet-based architectures based on both

IMC and conventional multiply-and-accumulate (MAC) engines for DNN acceler-

ation [2, 12, 1, 10, 13, 11, 14, 15, 16, 17, 18, 19, 20]. However, existing schemes do

not consider the non-uniform distribution of weights and activations within DNNs

while designing the chiplet-based architecture. Figure 1.1(a) and Figure 1.1(b)

show the distribution of activations and weights (normalized) across all layers of

ResNet-50 on ImageNet and VGG-19 on CIFAR-100. The initial layers have more ac-

tivations between layers but have fewer weights. A larger number of activations lead

to more on-chip data movement, while fewer weights imply reduced computations.

In contrast, the latter layers have more weights and fewer activations, resulting in

increased computations and reduced data movement. Hence, the chiplet-based

IMC architectures should be optimized to match the non-uniform algorithm struc-

2

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
0 . 0

0 . 5

1 . 0

2 4 6 8 1 0 1 2 1 4 1 6 1 8
0 . 0

0 . 5

1 . 0

 W e i g h t s A c t i v a t i o n s
No

rm
ali

ze
d L

ay
er-

wi
se

 W
eig

hts
 an

d A
cti

va
tio

ns
R e s N e t - 5 0 o n I m a g e N e t

(b)

(a)

D N N L a y e r

V G G - 1 9 o n C I F A R - 1 0 0

Figure 1.1: Normalized layer-wise activation/weight distribution for (a) ResNet-50
(ImageNet) and (b) VGG-19 (CIFAR-100). Initial/latter layers are activation/weight
dominated.

ture and maximize the efficiency of computation and data movement across the

DNN layers.

Figure 1.2(a) shows the IMC utilization of four different DNNs using a homo-

geneous chiplet-based RRAM IMC architecture. The architecture utilizes chiplets

with 16 tiles, where each tile consists of an array of 16 IMC crossbar arrays of size

256×256 [2]. The chiplets are interconnected by a 32-bit wide NoP operating at

250MHz, having the signaling scheme in [21]. Smaller DNNs like DenseNet-40 on

CIFAR-10 have 29% IMC utilization, while larger DNNs like VGG-19 on CIFAR-100

achieve 40% IMC utilization. A lower IMC utilization leads to increased IMC array

arrays and in turn, higher energy and latency. Furthermore, a single NoP structure

3

results in significant area overhead due to the large NoP driver and interconnect cost.

Figure 1.2(b) shows that for the homogeneous structure, the NoP accounts for 90%

and 50% of the total area for VGG-19 on CIFAR-100 and DenseNet-40 on CIFAR-10,

respectively. In addition, the increased NoP bus width leads to higher NoP energy

with up to 53.75× higher cost relative to an 8-bit multiply-and-accumulate (MAC)

operation in 16nm technology node [12].

Optimizing the architecture and the NoP will lead to efficient execution of

DNN models. Therefore, this work addresses the inefficiency of homogeneous

chiplet-based IMC architectures that fail to exploit the underlying distribution of

weights and activations within DNNs. To this end, we propose a heterogeneous

chiplet-based IMC architecture that integrates big and little-chiplet banks, as il-

lustrated in Figure 2.1. Specifically, we develop an algorithm to determine the

optimal configuration of the big-little IMC chiplet architecture. The little-chiplet

bank consists of little chiplets interconnected by an interposer-based NoP (chiplets

are placed closed to each other) [21]. Similarly, the big-chiplet bank consists of

big chiplets interconnected by a bridge-based NoP [22]. Little chiplets consist of

fewer/smaller IMC crossbars or processing element (PE) arrays, while the big

chiplets have more/larger IMC crossbars or PE arrays. In addition, each chiplet

(big/little) utilizes a local DRAM to store the weights of the DNN.

In addition to the hardware architecture, we also propose a new technique to

map DNNs onto the big-little chiplet-based IMC architecture. Taking a cue from

the non-uniform distribution of the weights and activations within the DNN, we

propose to map the early layers within a DNN onto the little chiplet bank and the

4

R e s N
e t - 1

1 0
V G G - 1 9

D e n s e N
e t - 4

0

R e s N
e t - 3

40
2 0
4 0
6 0
8 0

1 0 0

R e s N
e t - 1

1 0
V G G - 1 9

D e n s e N
e t - 4

0

R e s N
e t - 3

40
2 0
4 0
6 0
8 0

 H o m o g e n e o u s P r o p o s e d B i g - L i t t l e
IM

C U
tili

za
tio

n (
%)

(a)

No
P A

rea

Co
ntr

ibu
tio

n (
%)

(b)

Figure 1.2: IMC utilization for different DNNs using a homogeneous chiplet RRAM
IMC architecture [2] and the proposed heterogeneous big-little chiplet architecture.
The heterogeneous big-little architecture improves the IMC utilization.

subsequent layers onto the big chiplet bank. The smaller structure of the weights in

the early layers results in higher utilization within the little chiplet bank, while the

larger layers towards the end of the DNN achieve high utilization on the big-chiplet

bank. To achieve this, we develop a custom mapping algorithm that performs the

mapping of the DNN on to the big-little architecture. We note that, the algorithm

is universal and applies to the case when the resource in a given big-little chiplet is

not enough to store all DNN weights.

We exploit the activation distribution by utilizing an interposer-based NoP

with high bandwidth within the little chiplet bank, which houses the early layers

with higher on-chip data movement. Simultaneously, the subsequent layers with

lower on-chip data movement (fewer activations) utilize the bridge-based NoP

with lower bandwidth within the big chiplet bank. Experimental evaluation of

5

the proposed big-little chiplet-based RRAM IMC architecture on ResNet-50 on

ImageNet shows up to 259×, 139×, and 48× improvement in energy-efficiency

with lower area compared to Nvidia V100 GPU, Nvidia T4 GPU, and SIMBA [1]

architecture, respectively.

In addition, there is an increasing demand to implement neural networks on

mobile edge devices for both on-chip training and inference following recent de-

velopments in the internet of things (IoT). Nonetheless, due to the significant

computational resources required for training, deploying neural networks on edge

devices with limited resources poses a challenge. One such case is home-based re-

habilitation systems. Home-based rehabilitation using video cameras and wearable

sensors has attracted significant attention due to its potential to help millions of

people [23, 24, 25, 26]. For example, a recent study shows more than a two-fold in-

crease in the number of amputations during the COVID-19 pandemic [27]. Remote

monitoring and rehabilitation can complement infrequent and prolonged in-person

visits to enable early diagnosis and intervention.

Prevalent use of home-based rehabilitation systems requires addressing three

critical challenges. First, these systems must be sufficiently accurate to detect ab-

normal behavior and produce actionable data for health professionals. This re-

quirement leads to the second challenge: sophisticated algorithms, such as machine

learning (ML) and artificial intelligence (AI) techniques. Offloading these algo-

rithms to the cloud is not a desirable solution since sending raw sensor data incurs

high communication energy and latency while threatening user privacy. Hence, the

third challenge is accomplishing home-based rehabilitation by running algorithms

6

locally, at the edge.

Recent techniques enable home-based rehabilitation using RGB cameras [23, 24],

wearable inertial measurement units (IMU) [26], and millimeter-wave (mmWave)

radar sensors [25]. These techniques collect sensor data as the patients perform

rehabilitation movements. Then, they process the sensor data, typically using a

convolutional neural network (CNN), to produce human joint coordinates. While

these approaches show strong potential, they have one fundamental shortcoming.

All prior techniques train their inference models with the user data available at

design time. Then, they assume that future users, whose number is likely to be

much larger than the training set, will use the produced model for inference. Even

if the CNNs inference models generalize to arbitrary users, there is no guarantee

that their accuracy will remain accurate. Hence, this limitation jeopardizes the first

requirement: high accuracy in estimating the joint coordinates. As a result, there is

a strong need for approaches that customize the deep learning models to specific

users through on-device training in the home environment.

RGB cameras are the most common sources since they offer true-color real-world

information. However, always-on cameras at home can raise serious privacy concerns

such as facial information leakage. In contrast, mmWave radar, an emerging wireless

sensing device, can accurately measure objects’ moving trends while retaining

privacy. In this work, we focus on systems that use mmWave radar inputs since

they also have significantly lower processing requirements than RGB camera inputs

and do not require users to wear any special sensors. We assume that an inference

model, such as CNN, is trained offline to convert mmWave signals to human joint

7

positions. Then, it is acquired by a new patient for home-based rehabilitation.

Since the accuracy of this model is limited by the offline data, the proposed system

aims to customize the initial model to the new user, as illustrated in Fig. 4.1. The

camera is activated only during this customization process to produce the human joint

coordinates using the video frames. Then, these joint positions are used as a

reference to supervise the incremental training of the inference model that uses the

mmWave signals. After the customization, only the mmWave signals and corresponding

inference model are used during the device lifetime, achieving over 13-fold inference

time and 131-fold power consumption savings.

Current processors used for inference at the edge (e.g., at home) have limited

processing capability due to their cost and energy constraint. For example, the

Nvidia Jetson Xavier NX board can perform inference using mmWave inputs in

149.7 µs per input frame. However, training using RGB camera input reference

takes 620 ms per frame on the same device. It can barely achieve a 1.6 frame per

second (FPS) operation, which is impractical considering realistic 30 FPS or higher

video frame rates. Storing the video frames and performing inference later is also

not practical due to excessive memory requirements. Hence, practical solutions

require novel AI hardware and methodologies to perform on-device training at

the edge. To address this need, we propose an energy-efficient on-device training

approach that enables personalized home-based rehabilitation, PHR. The proposed

approach first generates the ground truth 3D joint coordinates data using RGB

cameras. These coordinates are used to supervise on-device training. Then, we

customize a baseline mmWave human pose estimation model using energy-efficient

8

on-device training. After the customization, our framework uses mmWave radar

signals and the customized home-based rehabilitation model.

In summary, this preliminary report makes the following contributions:

Big-Little Chiplets [28]:

• We propose a heterogeneous big-little chiplet-based IMC architecture that

utilizes a big and little IMC-based chiplet compute structure coupled with an

optimal NoP configuration (interposer and bridge).

• We present a custom mapping strategy of DNNs onto the big-little chiplet

IMC architecture that exploits the non-uniform distribution of weights and

activations,

• Our experiments of the proposed big-little chiplet-based RRAM IMC ar-

chitecture on ResNet-50 on ImageNet achieve up to 259×, 139×, and 48×

improvement in energy-efficiency and lower area compared to Nvidia V100

GPU, Nvidia T4 GPU, and SIMBA [1] architecture, respectively.

On-Chip Training [29]:

• An energy-efficient on-chip training framework that customizes mmWave-

based human pose estimation model for higher accuracy.

• A Resistive RAM-based in-memory computing accelerator for on-chip training

and inference of mmWave and inference of RGB models.

9

• Experimental results that demonstrate the practical real-life use of our frame-

work, with a 28.01% lower error, 611.1× lower inference energy, and 14.0×

faster training than a baseline model on Nvidia Jetson Xavier NX [30].

The rest of the report is organized as follows. The literature survey is discussed

in Chapter 2. Chapter 3 presents the first completed preliminary work, Big-Little

Chiplets for IMC of DNNs, and discusses its role in large-scale computing. The

second completed preliminary work, energy-efficient on-chip training approach for

personalized home-based rehabilitation systems is presented in Chapter 4. The first

proposed work on sparse neural network optimization is discussed in Chapter 5.

Chapter 6 presents the second proposed work on carbon footprint optimization.

Other work that I have completed during my research is discussed in Chapter 7.

Finally, Chapter 8 concludes this report.

10

2 literature review

2.1 Chiplet-based Architectures

Chiplet-based architectures are well explored for high-performance computing

applications [14, 15, 10, 31, 16, 13, 32]. A co-design flow considering architecture,

chip, and package for a chiplet-based system is proposed in [14]. A detailed design

space exploration with the proposed co-design flow shows significant improvement

in power consumption and area with respect to a monolithic design. Vivet et al. [15]

proposed a chiplet-based system with 96 computing cores and a 3D memory are

distributed over 6 chiplets. Another recent work proposed a 2,048 chiplet (14,336

cores) wafer-scale processor that utilizes a bridge-based integration [10]. The

authors discuss the challenges of designing a wafer-scale processor and provide

insights into power delivery, clock routing, and testing.

Chiplet-based architectures have proven to be both more energy-efficient and

cost-effective than monolithic architectures for complex DNNs. Several prior stud-

ies proposed chiplet-based architectures for DNN acceleration [1, 33, 12]. The

authors of [1] proposed a fine-grained 36-chiplet architecture for DNN inference

acceleration. Each chiplet utilizes a homogeneous structure with 16 PEs that operate

using a weight stationary dataflow. The chiplets are connected by a 6×6 NoP mesh

that utilize the ground-referenced signaling technique [21]. The authors of [12]

proposed a hierarchical and analytical framework, NN-Baton, to analyze DNN map-

ping and communication overheads in a chiplet-based DNN accelerator. NN-Baton

supports different mapping schemes of DNNs onto the chiplets. Furthermore, an

11

Figure 2.1: Cross-sectional view of the big-little chiplet-based IMC architecture.
The architecture consists of a little chiplet bank with little chiplets (connected by
an NoP within the interposer and a big chiplet bank with big chiplets connected by
a bridge NoP. NoP properties: 1.5–8mm length, 2–4.5µm pitch, and 0.5–2µm width.

analytical model to quantify the communication overhead for NoP is also presented

in NN-Baton. A family of chiplet topologies are proposed in [33]. The authors

explored different chiplet topologies and compared their performance through an

analytical metric which estimates latency. A chiplet-based IMC benchmarking tool

for design space exploration, SIAM, is proposed in [2]. SIAM supports different

chiplet architectures, IMC crossbar tile structures, NoP, NoC, and DRAM estima-

tion. However, all prior studies assume a homogeneous chiplet structure across

all chiplets interconnected by a single NoP. Furthermore, none of the prior works

considered the non-uniform distribution of weights and activations in the DNN

during the mapping process. Hence, many chiplets remain under-utilized while

the large NoP leads to an increased area and energy overhead.

In contrast to prior works, we propose a heterogeneous big-little chiplet-based

IMC architecture that combines big chiplet bank with a bridge-based NoP and a little

IMC chiplet bank with an interposer-based NoP to enhance the IMC utilization and

improve energy efficiency. Furthermore, we propose a customized methodology

12

that exploits the non-uniform distribution of DNN weights and activations in

mapping the DNNs onto the big-little chiplet IMC architecture. To the best of

our knowledge, this is the first heterogeneous chiplet-based IMC architecture that

leverages different IMC structures collectively with a heterogeneous NoP coupled

with a customized DNN mapping.

2.2 Home-based Rehabilitation Systems

Home-based rehabilitation systems draw significant attention, especially during the

pandemic era, since they facilitate patient access to rehabilitation exercises at home

and reduce in-person physical therapy sessions. To this end, researchers established

the relationship between human joint location and rehabilitation movements [23,

24]. Authors in [23] proposed an approach that can get human joint information

and face videos to relate the pain to the patient’s movement. UI-PRMD [24] dataset

provides exercise data using Kinect and motion capture system. To check whether

the exercises conform to standards, rehabilitation systems require accurate human

pose estimation, usually obtained from RGB images [34, 35]. OpenPose [34] and

HRNet [35] are the most representative approaches that achieve fast and accurate

human pose estimation from RGB sources.

mmWave radar-based pose estimation addresses privacy concerns and enhances

robustness to the environment compared to RGB-based approaches, thus being

an emerging solution for rehabilitation systems [25, 36, 37]. These approaches

map 3D mmWave point cloud to ground truth human joints using smaller CNNs

13

than those processing RGB video ones since the mmWave frames are significantly

smaller than their RGB counterparts. However, existing techniques focus on offline

learning and algorithm design. Since they assume that offline-design CNNs will

generalize to arbitrary users, they only consider inference during rehabilitation

exercises. Hence, they do not deal with on-device training after a new patient starts

using the system. In strong contrast, our proposed framework achieves end-to-end

real-time mmWave-based human pose estimation, including training and inference.

The acceleration of both training and inference is critical for the real-time ex-

ecution of applications. To this end, we utilize a Resistive RAM (ReRAM)-based

in-memory computing (IMC) AI accelerator for our framework. IMC-based hard-

ware accelerators perform computation inside memory units to reduce off-chip

data communication. ReRAM-based approaches achieve high density and low

energy consumption. Therefore, they are widely used for machine learning ac-

celeration [3, 1, 38, 6, 28]. The training of CNN models is vulnerable to gradient

precision and the write endurance and nonlinear properties of ReRAM architec-

tures can cause an accuracy loss during training [39, 40]. Authors in [40] and [41]

proposed methods to mitigate these problems. By utilizing these methods, on-chip

training on ReRAM-based IMC accelerators is possible without seeing a significant

accuracy drop.

In contrast to prior work, we propose PHR, a ReRAM-based IMC accelerator with

energy-efficient on-chip training capacity for home-based rehabilitation systems.

To the best of our knowledge, it is the first system that enables real-time processing

of RGB image data, fast on-chip training of mmWave radar-based human pose

14

estimation, and energy-efficient model inference for continuous patient usage.

2.3 Task Scheduling Techniques for Heterogeneous

Architectures

Schedulers have evolved significantly to adapt to different requirements and opti-

mization objectives. Static [42, 43] and dynamic [44] task scheduling algorithms

have been proposed in the literature. Completely Fair Scheduler (CFS) [44] is a

dynamic approach that is widely used in Linux-based OS and aims to provide

resource fairness to all processes while the static approaches presented in [42, 43]

optimize the makespan of applications. CFS [44] was initially developed for ho-

mogeneous platforms, but it can also handle heterogeneous architectures (e.g.,

Arm big.LITTLE). While CFS may be effective for client and small-server systems,

high-performance computing (HPC) and high-throughput computing (HTC) ne-

cessitate different scheduling policies. These policies, such as Slurm and HTCondor,

are specifically designed to manage a large number of parallel jobs and meet high-

throughput requirements [45, 46]. On the other hand, DSSoCs demand a novel

suite of efficient schedulers that execute at nanosecond-scale overheads since they

deal with scheduling tasks that can execute in the order of nanoseconds.

The scheduling overhead problem and scheduler complexities are discussed

in [47, 48, 49]. The authors in [47] propose two dynamic schedulers, named as

CATS and CPATH, where CATS detect the longest and CPATH detects the critical

paths in the application. CPATH algorithm shows inefficiency in terms of its higher

15

scheduling overhead. Motivated by high scheduling overheads, [50] propose a

new scheduler that approximates an expensive heuristic algorithm using imitation

learning with low overhead. An imitation learning-based scheduler approximates

an expensive heuristic with a low overhead [50]. However, the scheduling overhead

is still approximately 1.1 µs, making it inapplicable for DSSoCs with nanosecond-

scale task execution. Energy-aware schedulers for heterogeneous SoCs have limited

applicability to DSSoCs because of their complexity and large overheads [51, 52].

Several scheduling algorithms that demonstrate the benefits of using multiple

schedulers are proposed in [53, 54, 55]. Specifically, the authors in [53] propose a

technique that switches between three schedulers dynamically to adapt to varying

job characteristics. However, the overheads of switching between policies are not

considered as part of the scheduling overhead. The approach in [55] integrates

static and dynamic schedulers to exploit both design-time and runtime character-

istics for homogeneous processors. The hybrid scheduler in [55] uses a heuristic

list-based schedule as a starting point and then improves it using genetic algo-

rithms. However, it does not consider the scheduling overhead of the individual

schedulers. The authors in [48] discuss the performance comparison of a simple

round-robin scheduler and a complex earliest deadline first (EDF) scheduler and

their applicability under different system load scenarios.

Using insights from literature, we propose a novel scheduler that combines the

benefits of the low scheduling overhead of a simple scheduler and the decision

quality of a sophisticated scheduler (described in Section 7.1.3) based on the system

workload intensity. To the best of our knowledge, this is the first approach that uses

16

a novel runtime preselection classifier to choose between simple and sophisticated

schedulers at runtime to enable scheduling with low energy and nanosecond scale

overheads in DSSoCs.

17

3 big-little chiplets for in-memory acceleration of

dnns: a scalable heterogeneous architecture

3.1 Overall Architecture

Figure 3.1(a) shows the top-level block diagram of the heterogeneous big-little

chiplet IMC architecture. The architecture consists of two banks of IMC chiplets, a

little bank (shown in yellow color) and a big bank (shown in light red color). The

little IMC chiplet bank consists of chiplets with smaller and fewer IMC crossbar

arrays compared to the big chiplets. It is placed on an interposer that houses the

NoP. The NoP provides high bandwidth and a compact structure for on-package

communication within the little chiplet bank. At the same time, the increased size

and count within the big chiplet bank allow for higher computation capability. The

big chiplets are directly connected to the substrate using micro-bumps. A bridge-

based NoP is utilized within the big chiplet bank for on-package communication.

Long wires of the bridge NoP allow easy integration of the big chiplets. We utilize

the Y–X routing methodology for the NoP. Each chiplet (big and little) consists of

a local DRAM (DDR4 in this work) that stores the weights required for the IMC

crossbar arrays.

Figure 3.1(b) shows the structure of a IMC chiplet. Each chiplet utilizes a hier-

archical structure that consists of an array of big (bottom of Figure 3.1(c)) or little

IMC tiles (top of Figure 3.1(c)) and each tile consists of an array of IMC crossbars

or PEs. In addition, the chiplet contains a pooling unit, non-linear activation unit,

18

Figure 3.1: (a) Overview of the big-little chiplet IMC architecture. The little chiplet
bank utilizes smaller chiplets connected by a interposer-based NoP while the big
chiplet bank utilizes bigger chiplets connected by a bridge-based NoP. Each chiplet
utilizes a local DRAM, (b) IMC chiplet architecture (big and little). Each chiplet
consists of an array of IMC tiles and a dedicated NoP transceiver and router, (c)
The little chiplet bank consists of fewer and smaller tiles while the big chiplet bank
consists of more bigger tiles. Both chiplet structures utilize a mesh-based NoC for
on-chip communication, and (d) Structure of each tile within the big and little
chiplet. It consists of an array of IMC crossbar arrays and associated peripheral
circuits with an interconnect similar to that in [3]. The little chiplet consists of fewer
and smaller IMC crossbars while the big chiplet has larger and more IMC crossbar
arrays.

accumulator, and buffer. The accumulator is used for the partial sum accumulation

across different tiles within the chiplet. Furthermore, the buffers allow for efficient

data movement in and out of the chiplet. Each IMC chiplet consists of a dedicated

NoP transceiver used for the transmission and reception of packets across the NoP.

In this work, we adopt the NoP transceiver from [21]. Each transceiver consists of

a local PLL circuit that provides the clock for the transceiver. A five-port router is

utilized for routing of the data across the NoP.

Each IMC chiplet utilizes a local DRAM to store the weights. The local DRAM

allows for external memory access, thus making our proposed big-little architecture

a generic platform. If a DNN does not fit on the entire chip, the DRAM stores all the

19

weights necessary for each chiplet. First, the DRAM loads the necessary weights

into the IMC crossbar arrays. Next, while the computation is performed, the DRAM

loads the next set of weights of the DNN. The buffer is designed to support a ping-

pong operation [56]. The weights from the DRAM are loaded into the first buffer

stage (ping) and then moved to the second buffer stage (pong). Therefore, the

big-little IMC chiplet architecture masks the DRAM latency with the computation

latency, achieving high throughput.

Finally, Figure 3.1(d) shows the structure of an IMC tile. Each array in the

crossbar consists of PEs that perform the computations. In this work, we focus

on a resistive random-access-memory (RRAM) based IMC crossbar array due to

its superior energy-efficiency [3]. The computations are performed in the analog

domain by turning on all wordlines (WL) together and performing accumulation

along the bitline (BL). The inputs are given through the WL while the weights are

stored within the RRAM cells. Each IMC array consists of specialized peripheral

circuitry that assists the computation. The peripheral circuitry includes a column

multiplexer (mux), an analog-to-digital converter (ADC), a shift and add circuit,

and a buffer. The column mux is used to share the ADC across columns of the

IMC array. The ADC converts the MAC output in the analog domain across each

column into the digital domain. The big-little IMC architecture does not utilize a

digital-to-analog converter (DAC) by employing bit-serial computing. The shift

and add circuit handles the positional value of each bit within the multi-bit input

activations that are computed using the IMC arrays. The buffers within the tile are

utilized for storing the partial sums and the input activations.

20

The following two sections present the implementation details and experimental

evaluations, respectively.

3.2 Parameters of the Big-Little Architecture and

Mapping

This section describes the implementation and mapping details of the Big-Little

chiplet architecture.

The underlying non-uniform distribution of weights and activations within a

DNN results in an increased number of activations in the early layers and larger

number of weights in the subsequent layers (Figure 1.1). This non-uniform weight

distribution leads to under-utilization of chiplets in the early layers, thus a lower

overall IMC utilization. To improve the IMC utilization, crossbar arrays with smaller

size (e.g. 32×32 instead of 128×128) can be used everywhere. However, using

smaller crossbar arrays also leads to increasing number of chiplets in the system.

In turn, larger number of chiplets in the system increases the area as well as energy

consumption (due to higher relative area and energy of the peripheral circuits)

masking the benefit of using chiplet-based system. Therefore, a balance between

crossbar array size and number of chiplets in the system is necessary. To this end,

we propose a technique to optimize the big-little chiplet configuration as discussed

next.

21

3.2.1 Configuration of the big-little chiplets

We first determine the configuration of big-little chiplets by computing the tile uti-

lization with different big-little chiplet configurations for a given DNN. Algorithm 1

shows our proposed technique to find the utilization. The inputs to the algorithm

are

1. the set of crossbar sizes for the little chiplets (XL) and the big chiplets (XB),

2. set of number of tiles in the little chiplets (TL) and the big chiplets (TB),

3. number of little chiplets (NL) and big chiplets (NB),

4. the DNN structure,

5. the total number of chiplets in the system.

We note that the initial layers of the DNN are mapped on to little chiplets since

there are fewer weights in the initial layers. A DNN layer is mapped on to a chiplet

when number of tiles required for that layer is less than the number of remaining

tiles in the chiplet, i.e., the available resource on the chiplet is sufficient for the layer

(as shown in line 13–17 of Algorithm 1). Once a layer (layer-j) is mapped on to a

chiplet, the tile utilization is computed as:

IMCj =

⌈
Kx

j × ky
j ×Nif

j

x

⌉
×

⌈
Nof

j ×Q

x

⌉

uj = 100×
Kx

j × ky
j ×Nif

j ×Nof
j ×Q

IMCj × x× x
(3.1)

22

where Kx
j and Ky

j are the kernel sizes of layer-j, Nif
j and Nof

j are the number of i/p

and o/p features for layer-j, Q is the quantization precision, IMCj is the number of

IMC crossbars required for layer-j and x is the IMC crossbar size (x× x). Once the

resources of a chiplet are exhausted, the next chiplet is considered for mapping.

This process continues until no chiplet (little/big) is available.

In the proposed method, for each chiplet configuration, we obtain the average

utilization for a particular DNN after each layer is mapped(line 36 of Algorithm 1).

Then we sort (in descending order) the configurations based on the utilization and

save the top K configurations. The above procedure is repeated for M different

DNNs and the configuration with highest utilization which is common for all DNNs

is considered as the final configuration for the big-little chiplet system. We note that

K and M are user-defined parameters and our proposed technique is independent

of these parameters.

3.2.2 Configuration of the big-little NoP

The heterogeneous chiplet configuration (discussed in Section 3.2.1) improves the

overall chiplet utilization by using smaller chiplets that match well to the early

layers with fewer weights. However, the initial DNN layers produce higher number

of activations compared to later layers. Therefore, the volume of traffic between

little chiplets (used for initial DNN layers) is higher than the traffic volume between

big chiplets (used for later DNN layers). Hence, the network-on-package (NoP)

configuration between little chiplets needs to be different than that of the big chiplets.

To this end, we propose a technique to determine optimal NoP configuration for a

23

system with big-little chiplet targeted for a particular DNN. Algorithm 2 shows the

technique to determine NoP configuration for a particular DNN. The inputs to the

algorithm are:

1. big-little chiplet configuration obtained from Algorithm 1,

2. set of NoP bus width for the little chiplets (WL) and the big chiplets (WB),

3. set of NoP frequency for the little chiplets (FL) and the big chiplets (FB),

4. the DNN structure.

We evaluate the energy-delay product of communication for each NoP configu-

ration in the set of configurations. An analytical expression based evaluation is

incorporated to perform fast exploration in the NoP configuration space. First, we

evaluate communication volume of each NoP configuration given a particular DNN.

The communication volume is equivalent to the number of packets transferred

between two chiplets, and the number of packets (P) is expressed as P = b
w

, where

b is the number of bits to be communicated and w is the NoP bus width. We divide

the number of packets by NoP frequency (f) to obtain an approximation of NoP

latency d = P
f
= b

w×f
. Next, we compute NoP power consumption by assuming

that it is proportional to cube of NoP frequency [57]; p = f3. Then the approximate

energy consumption (e) is computed by multiplying communication latency and

communication power; e = d× p. Finally, communication EDP between each pair

of chiplet (edp) is computed as:

edp = e× d = d× p× d = d2 × f3 =
(b

w× f

)2 × f3 =
b2 × f

w2 (3.2)

24

The total communication EDP for each NoP configuration for a particular DNN

is obtained by adding the communication EDP between each pair of chiplets. A

total of K NoP configurations with lower EDP are saved and the above procedure

is repeated for M different DNNs. The configuration with lowest cost which is

common for all DNNs is considered as the final NoP configuration for the big-little

chiplet system. Similar to the technique of selecting big-little chiplet configuration

(described in Section 3.2.1), K and M are the user defined parameter and our

proposed technique is independent of these parameters.

3.2.3 Mapping a Previously Unseen DNN to a System on

big-little Chiplets

So far, we described our proposed technique to determine the optimal configura-

tion of big-little chiplet and the NoP. The optimal configuration is determined by

performing design space exploration with several DNNs. However, an unknown

DNN (not seen before) may be encountered at runtime. Moreover, there is no

guarantee that all the weights of a given DNN will fit in the on-chiplet resources

since the number of DNN parameters seem to be continuously growing. In these

cases, we need to divide the entire DNN into multiple parts and load the weights of

each part from DRAM before executing. Algorithm 3 shows the DNN partitioning

as well as the mapping technique. The input to the algorithm is the DNN structure,

big-little chiplet configuration and big-little NoP configuration. First, we compute

the number of in-memory computing bits available on the system (SB). Specifically,

for each type (little/big) of chiplets, we multiply the number of available chiplets

25

(nl/nb), the number of tiles in each chiplet (tl/tb), the number of crossbar array in

each tile (16), and the size of IMC crossbar array for big and little chiplets (xl/xb).

Then we add the product for big and little chiplets to obtain the total number of

in-memory computing bits available on the system (SB):

SB = (nl × tl × 16× xl × xl) + (nb × tb × 16× xb × xb) (3.3)

Next, we compute the number of bits required to store all the weights of the DNN

(DB). Assuming average utilization of u(0 < u ⩽ 1), the total number of partitions

(Pr) required for the DNN is computed by taking the ceiling of the quotient obtained

by dividing the required number of bits to store all weights (DB) by the available

number of in-memory bits on the system (SB):

Pr =
⌈ DB

SB × u

⌉
(3.4)

For each partition, first, we compute the utilization of ith layer on a big chiplet

(Ui
B) as well as on a little chiplet (Ui

L). We compute Ui
B and Ui

L using Equation 3.1.

If the big chiplet utilization ((Ui
B)) is less than the little chiplet utilization (Ui

L) and

the little chiplet bank is not exhausted, then the layer is mapped onto a little chiplet,

as shown in lines 7–12 of Algorithm 3. Otherwise, we compute the number of big

chiplets required (aB) to map the rest of the layers. If aB is less than or equal to

the number of available big chiplets (AB), then we map the rest of the layers to the

big chiplet bank, else the algorithm throws an error since the resource requirement

exceeds the available capacity (shown in line 18–23 of Algorithm 3). Thus, we

26

ensure that the initial layers with fewer weights are mapped into little chiplets and

the latter layers with higher number of weights are mapped onto big chiplets with

more computation resources. Therefore, our proposed custom mapping of the

DNN onto the big-little chiplet architecture ensures high IMC utilization.

3.3 Experimental Evaluation

3.3.1 Experimental Setup

Evaluation platform: To evaluate the proposed heterogeneous big-little IMC chiplet

architecture, we use a customized version of the open-sourced tool SIAM [2]. The

customization includes the addition of the custom mapping scheme detailed in

Section ??. In addition, we handle the big-little chiplet IMC architecture by adding

the number of each type (big/little) of chiplets, the number of tiles inside big and

little chiplets, and the big-little IMC structure. Furthermore, we also assume that

each type of chiplet can use different NoP width. The simulator performs the

mapping of a given DNN onto the big-little IMC chiplet architecture. The outputs

include area, energy, latency, throughput, energy efficiency, and IMC utilization

(for all individual components in the architecture). Finally, we add support for

intermediate DRAM access (DDR4 [58]) for each chiplet to handle the case where

all weights do not fit on the system at once. We plan to open-source the tool and

optimization methodology upon acceptance of the paper.

DNN algorithms and architectural parameters: We evaluate the proposed het-

erogeneous chiplet architecture with DenseNet-40 (0.26M) on CIFAR-10, ResNet-

27

Table 3.1: Set of configurations considered to determine big-little chiplet and NoP
structure.

Chiplet Configuration NoP Configuration

Parameter Values in the Set Parameter Values in the Set

XL {32, 64} WL {16, 32, 64}

XB {128, 256, 512} WB {4, 8, 12, 16, 20, 24}

TL {9, 16, 25} FL {600, 1000, 1400, 1800} MHz

TB {36, 49} FB {600, 800, 1000} MHz

110 (1.7M) on CIFAR-10, VGG-19 (45.6M) on CIFAR-100, ResNet-34 (21.5M) and

ResNet-50 (23M) on ImageNet. We utilize an RRAM-based IMC structure for DNN

inference with the following parameters: one bit per RRAM cell, a Roff/Ron ratio

of 100, ADC resolution of 4-bits with 8 columns multiplexed, operating frequency

of 1GHz [59, 3], and a parallel read-out method. We use 8-bit quantization for

the weights and activations, and a 32nm CMOS technology node. The chiplets

are placed to achieve the least Manhattan distance. The NoP parameters include

Ebit of 0.54pJ/bit [21], interconnect parameters width, length, and pitch for the

interposer-based NoP from [21] and for bridge-based NoP from [60] (Figure 2.1),

per lane NoP TX/RX area of 5,304 µm2, and NoP clocking circuit area of 10,609

µm2 [61]. In addition, we also model the µbump for both the interposer [62] and

bridge-based [63] NoP by utilizing the PTM models [64].

28

Table 3.2: Performance comparison of each component of a homogeneous (Little
only, Big only) chiplet architecture and the heterogeneous Big-Little IMC chiplet
architecture for VGG-19 on CIFAR-100.

Configuration Area Energy Latency
IMC
(%)

NoP
(%)

NoC
(%)

Total
(mm2)

Normalized to
big-little (×)

IMC
(%)

NoP
(%)

NoC
(%)

Total
(mJ)

Normalized to
big-little (×)

IMC
(%)

NoP
(%)

NoC
(%)

Total
(ms)

Normalized to
big-little (×)

Little only 11.9 88.0 0.1 952.1 10.9 99.7 0.2 0.1 1.3 4.1 99.7 0.1 0.2 1.6 1.3
Big only 44.0 55.5 0.5 597.2 6.8 78.6 11.0 10.4 0.43 1.3 99.6 0.1 0.3 3.2 2.7

Big-Little (this work) 52.4 47.4 0.2 87.4 1.0 99.8 0.1 0.1 0.32 1.0 99.2 0.3 0.5 1.2 1.0

5 1 2
- 3 2

5 1 2
- 6 4

2 5 6
- 6 4

2 5 6
- 3 2

7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ut
iliz

ati
on

 (%
)

5 1 2
- 3 2

5 1 2
- 6 4

2 5 6
- 6 4

2 5 6
- 3 2

7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ut
iliz

ati
on

 (%
)

5 1 2
- 3 2

5 1 2
- 6 4

2 5 6
- 6 4

2 5 6
- 3 2

7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ut
iliz

ati
on

 (%
)

5 1 2
- 3 2

5 1 2
- 6 4

2 5 6
- 6 4

2 5 6
- 3 2

7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

Ut
iliz

ati
on

 (%
)

(a) (b) (c) (d)

Figure 3.2: IMC utilizations for different DNNs across different big-little chiplet-
based RRAM IMC configurations for (a) ResNet-110, (b) ResNet-34, (c) VGG-19,
(d) DenseNet-40. Based on the utilization, we choose crossbar size of big chiplet as
256×256 and crossbar size of little chiplet as 64×64 (256–64).

3.3.2 Big-Little IMC Structure and NoP

This section demonstrates the parameters related to big-little IMC structure and

big-little NoP. Specifically, we consider four DNNs (mentioned in Section 3.3.1) and

execute Algorithm 1 to determine the top 10 (K=10) configurations with highest

utilization for each DNN. We consider a system with 36 chiplets to limit the total

area and power consumption of the system. Table 3.1 shows the input parameters

(XL,XB,TL,TB) to the algorithm. We vary the number of little chiplets from 1 to

35 while maintaining the total number of chiplets to be 36. Then, we choose the best

configuration which is common for all four DNNs. We observe that a system with

25 little chiplets with a 64×64 IMC crossbar and 25 tiles per chiplet, and 11 big chiplets

29

with a 256×256 IMC crossbar and 36 tiles per chiplet provides best utilization across

all four DNNs. Figure 3.2 shows the utilization for a system with 25 little and 11 big

chiplets with varying size of crossbars (both for big and little chiplet) for all four

DNNs. In this case, we also fixed the number of tiles per chiplet to 25 for the little

chiplets and 36 for the big chiplets. Figure 3.2 reveals that the configuration where

the crossbar size of the big chiplets is 256×256 and the crossbar size of the little

chiplets is 64×64 (256–64, 256 denotes crossbar size of big chiplets and 64 denotes

crossbar size of little chiplets) shows higher utilization than other configurations for

three out of four DNNs. Only in the case of ResNet-110, the configuration 256–32

shows higher utilization than 256–64. However, we choose 256–64 over 256–32 since

it provides more on-chip resources, lower area and energy efficiency for the IMC

crossbar array (due to peripheral circuits).

Similarly, we execute Algorithm 2 for four DNNs to obtain the NoP configuration.

Table 3.1 shows the set of different NoP parameters (WL,WB,FL,FB used as inputs

to Algorithm 2). The parameters are adopted from [65]. EDP for NoP is obtained

for all NoP configurations for the four DNNs. Then, the NoP configuration having

the lowest EDP for all four DNNs is chosen. Based on the EDP results, the big NoP

frequency and the little NoP frequency is set to 600 MHz and 1 GHz, respectively;

the big NoP bus width and the little NoP bus width is set to 24 and 32, respectively.

Figure 3.3 shows the normalized NoP EDP for different combination of bus width

for big and little chiplets. For illustration purpose, we show VGG-19 and ResNet-34

since these two DNNs utilize more than 34 out of 36 chiplets. From Figure 3.3, it is

observed that the configuration with big NoP bus width of 24 and little NoP bus

30

8 - 6 4 8 - 3 2 1 6 - 3 2 2 4 - 3 2 2 4 - 6 4 1 6 - 6 40 . 2
0 . 4
0 . 6
0 . 8
1 . 0

N o P B u s W i d t h (B i g - L i t t l e)

 V G G - 1 9 R e s N e t - 3 4
No

rm
ali

ze
d N

oP
 ED

P

Figure 3.3: Normalized NoP EDP for different bus-widths for VGG-19 and ResNet-
34. The NoP with bus width of 24 for big and 32 for little chiplets (24–32) shows
lowest EDP.

Table 3.3: Performance comparison of a homogeneous (Little only, Big only) chiplet
architecture and the heterogeneous Big-Little IMC chiplet architecture for different
DNNs.

Configuration Utilization (%) Area (mm2) Energy (mJ) Latency (ms)

Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34 Res-110 VGG-19 Dense-40 Res-34

Little only 69 92 58 93 171.7 952.1 71.5 657.8 1.4 1.3 0.22 41.1 23.0 1.6 1.6 13.1

Big only 44 59 32 82 220.0 597.2 220.2 595.9 0.28 0.43 0.11 3.7 1.1 3.2 0.02 20.2

Big-Little (this work) 88 93 90 98 87.4 87.4 87.4 87.4 0.18 0.32 0.06 8.2 1.1 1.2 0.03 48.6

width of 32 shows the lowest EDP. Since little chiplets produce higher number of

activations than the big chiplets, it is intuitive that little NoP are wider (larger bus

width) than the big NoP.

3.3.3 Comparison with Baseline Architectures with

Homogeneous Chiplets

We compare the performance of our proposed big-little chiplet architecture with

respect to two baseline architectures with homogeneous chiplets [2]. 1) Little

31

only: In this configuration, we consider a system where the configuration of all

chiplets as well as the NoP is same as that of the little chiplets. 2) Big only: In this

configuration, we consider a system where the configuration of all chiplets as well

as the NoP is same as that of the big chiplets. We note that, the total number of

chiplets with ‘Little only’ and ‘Big only’ configurations vary for different DNNs.

Table 3.2 shows the performance comparison for ‘Little only’, ’Big only’ and the

proposed big-little architectures for VGG-19 on CIFAR-100. In this table, the per-

formance of each component of the architecture, i.e. IMC, NoP and NoC is shown.

Our proposed big-little chiplet architecture results in a balanced distribution of the

area among the circuit and NoP components, while the NoC accounts for a minimal

portion (0.2%) of the total area. In ‘Little-only’ architecture, NoP becomes the bot-

tleneck for area since the chiplets have smaller size, hence more number of chiplets

are required which increases the NoP. In ‘Big only’ architecture, NoP consumes

more energy due to higher volume of data movement between each pair of chiplets.

In contrast, the proposed big-little architecture with its high IMC utilization and

reduced on-chip communication as well as on-package data movement results in

less total energy consumption and less inference latency. Overall, the proposed

heterogeneous big-little architecture achieves up to 10.9× lower area, 4.1× lower

energy, and 2.7× lower latency than ‘Little only’ and ‘Big only’ architectures.

Next, we compare the IMC utilization and the performance (area, energy and la-

tency) for ResNet-110, VGG-19, DenseNet-40, and ResNet-34 against ‘little only’ and

‘big only’ architecture. For VGG-19, our proposed big-little architecture achieves

the highest IMC utilization of 93% compared to 92% and 59% for ‘Little only’ and

32

‘Big only’, respectively. Similarly, the big-little architecture achieves 88%, 90%, and

98% IMC utilization for ResNet-110, DenseNet-40, and ResNet-34, respectively,

up to 2.8× greater than ‘Little only’ and ‘Big only’ architectures. We observe that

the big-little architecture provides up to 7.8× improvement in energy and up to 21×

improvement in inference latency with respect to baseline homogeneous architec-

tures. ‘Big only’ architecture consumes less energy and less latency than big-little

architecture for ResNet-34, but in this case, the area of ‘Big only’ is 6.8× higher

than big-little architecture. To better analyze the performance comparison, we

plot the energy-delay-area product (EDAP) for all DNNs, as shown in Figure 3.4.

The big-little chiplet architecture provides up to 329× lower EDAP than the ‘Little

only’ and ‘Big only’ architectures across all four DNNs. Although ‘Big only’ ar-

chitecture shows improvement in energy consumption and inference latency with

respect to big-little for ResNet-34, the EDAP with ‘Big only’ is 1.3× higher than

big-little architecture in this case. Hence, the proposed big-little IMC architecture

achieves optimal performance through reduced EDAP at higher IMC utilization

across different DNNs.

3.3.4 Results with DRAM (DDR4)

In this section, we show the performance results when the resource on a big-little

chiplet-based system is not sufficient to store all the weights of a given DNN. In

that case, the DNN is divided into multiple partitions. One partition is mapped

on to the big-little chiplets at a time. While the computations of a partition of the

DNN are performed, the weights corresponding to the next partition are loaded

33

R e s N e t - 1 1 0 V G G - 1 9 D e n s e N e t - 4 0 R e s N e t - 3 41 0 - 2

1 0 0

1 0 2

1 0 4

L i t t l e o n l y B i g o n l y B i g - L i t t l e (t h i s w o r k)
ED

AP
 (m

m2 .m
J.m

s)
(lo

g-s
ca

le)
3 2 9 x 6 0 x

1 6 x

1 0 x

Figure 3.4: EDAP comparison (log-scale) of the big-little chiplet-based RRAM IMC
architecture to ‘Little only’ and ‘Big only’ chiplet-based RRAM IMC architectures.
The big-little architecture achieves up to 329× improvement compared to ‘Little
only’ architecture.

from the DRAM into the ping-pong buffer. The additional DRAM accesses result

in increased energy. At the same time, the impact on latency is reduced through

the ping-pong buffers [56]. Table 3.4 shows the ratio between DRAM energy and

compute energy for VGG-16 and VGG-19 with systems having different number

of chiplets. We observe that, the ratio of DRAM energy to computation energy

increases with reduction in the system sizes for both the DNNs. With decreasing

system size, more weights need to be stored and loaded from DRAM, thereby

increasing DRAM energy.

3.3.5 Comparison with State-of-the-art Work

Table 3.5 shows the comparison of the proposed heterogeneous big-little RRAM

IMC chiplet architecture with an Nvidia T4 and V100 GPU, and SIMBA [1]. The

34

Table 3.4: Ratio between DRAM energy and compute energy for VGG-16 and VGG-
19 with systems having different number of chiplets (**All weights of VGG-19 fit
on chip with this configuration, significantly reducing the DRAM energy).

Chiplets VGG-16 VGG-19
#partitions Ratio #partitions Ratio

36 2 1.1 1 0.08**
25 2 2.1 2 131
16 3 3.6 2 161

Table 3.5: Comparison with other platforms for ResNet-50 on ImageNet (*reported
in [1]).

Platform Area (mm2) Energy Efficiency (Images/s/W)
Nvidia V100 GPU* 815 8.3

Nvidia T4 GPU* 525 15.5
SIMBA [1] 215 45

Big-Little (this work) 85 827

big-little chiplet architecture achieves a lower area for the architecture due to the

custom RRAM-based IMC and the optimized NoP structure. Compared to the

Nvidia V100, Nvidia T4, and SIMBA architecture, the big-little IMC architecture

achieves 9.6×, 6.2×, and 2.5× area improvement and 99.6×, 53.4×, and 18.4×

energy-efficiency improvement, respectively. The improved energy efficiency is at-

tributed to the higher IMC utilization, analog computation within the RRAM-based

IMC, reduced NoP data movement and bus width, and the absence of intermediate

DRAM transactions for weights and partial sums.

35

Algorithm 1 Determining Big-Little Chiplet Configuration
1: Input: DNN structure, number of chiplets (NC), set of crossbars sizes for the

little chiplets (XL) and the big chiplets (XB); set of number of tiles in the little
chiplets (TL) and the big chiplets (TB); number of little chiplets (NL) and
number of big chiplets (NB)

2: Output: Tile utilization for each configuration i (Ui)
3: Ncfg ← number of configurations in the set containing all possible combinations

of the elements in XB, XL, TL, TB, NL, NB

4: L← number of DNN layers
5: for i = 1 : Ncfg do
6: nl = Number of little chiplets in Config-i
7: nb = Number of little chiplets in Config-i
8: j← 0 // Number of layers already mapped
9: U← 0 // Sum of utilization

10: nu
l ← 0 // Number of little chiplets used

11: while nu
l ⩽ nl and j < L do

12: jt ← Number of tiles required for layer-j
13: rlt ← Number of remaining tiles in the little chiplet
14: if jt < rlt then
15: Map layer-j to the little chiplet
16: uj ← Tiles utilization for layer-j (Eq. 3.1)
17: U = U+ uj;
18: j = j+ 1
19: else
20: nu

l = nu
l + 1

21: end if
22: end while
23: nu

b ← 0 // Number of big chiplets used
24: while nu

b ⩽ nb and j < L do
25: jt ← Number of tiles required for layer-j
26: rbt ← Number of remaining tiles in the big chiplet
27: if jt < rbt then
28: Map layer-j to the big chiplet
29: uj ← Tiles utilization for layer-j (Eq. 3.1)
30: U = U+ uj;
31: j = j+ 1
32: else
33: nu

b = nu
b + 1

34: end if
35: end while
36: Ui =

U
L

37: end for

36

Algorithm 2 Determining Big-Little NoP Configuration
1: Input: DNN structure, number of chiplets (NC), set of NoP bus widths for the

little chiplets (WL) and the big chiplets (WB); set of NoP frequency for the
little chiplets (FL) and the big chiplets (FB), mapping of layers to the big-little
chiplet (L→ C)

2: Output: NoP EDP for each configuration-i (Ei)
3: Ncfg ← number of configurations in the set containing all possible combinations

of the elements in WL, WB, FL, FB

4: L← number of DNN layers
5: nl = Number of little chiplets
6: nb = Number of big chiplets
7: for i = 1 : Ncfg do
8: wl = Bus-width of little chiplets in Config-i
9: wb = Bus-width of big chiplets in Config-i

10: fl = NoP frequency of little chiplets in Config-i
11: fb = NoP frequency of big chiplets in Config-i
12: Ei ← 0 // Initializing EDP of Config-i
13: for j = 1 : nl do
14: Compute edpj by from Equation 3.2
15: Ei = Ei + edpj // Communication EDP
16: end for
17: for k = 1 : (nb − 1) do
18: Compute edpk from Equation 3.2
19: Ei = Ei + edpk // Communication EDP
20: end for
21: end for

37

Algorithm 3 Mapping DNN Layers to Big-Little Chiplets
1: Input: DNN layers (L), IMC crossbar size in Big chiplet (xb), IMC crossbar

size in little chiplet (xl), number of tiles in big chiplets (tb), number of tiles in
little chiplets (tl), number of available big chiplets (nb), number of available
little chiplets (nl)

2: Output: Mapping of layers to of big-little chiplet (L→ C)
3: Compute SB by following Equation 3.3
4: Compute Pr by following Equation 3.4
5: for j = 1 : Pr do
6: Lj → DNN layers for partition-j; Lj ∈ L

7: for i = 1 : |Lj| do
8: aL → 1 // Number of little chiplets used
9: Compute utilization of ith (Ui

B) layer on a big chiplet using xb, tb
10: Compute utilization of ith (Ui

L) layer on a little chiplet using xl, tl
11: if ((Ui

B < Ui
L)&(aL ⩽ AL)) then

12: Map ith layer to little chiplet.
13: if Resource in aL is exhausted then
14: aL → aL + 1
15: end if
16: else
17: Compute # of big chiplets (aB) required to map layer-i – layer-|L||

18: assert((aB ⩽ AB), ‘Error’)
19: for k = i : |Lj| do
20: Map kth layer to big chiplet.
21: end for
22: break
23: end if
24: end for
25: end for

38

4 energy-efficient on-chip training for customized

home-based rehabilitation systems

4.1 Home-Based Rehabilitation System

This section first overviews the proposed system. Then, Section 4.1.2 presents

the proposed hardware platform used for the on-chip training and inference. Sec-

tion 4.1.3 discusses the on-chip training and ground truth generation. Finally,

Section 4.1.4 presents hardware implementation.

4.1.1 Overview of the Proposed PHR System

Initial Offline Training: The initial inference model, a CNN in this work, is trained

offline using a limited set of users. Two video cameras and a mmWave radar detect

the patients’ movements during training. An RGB-CNN [35] model transforms the

video frames to 2D joint coordinates. Then, we find the 3D joint coordinates by

triangulating 2D joints from two cameras. Finally, these coordinates are used as

references for supervised training of a mmWave-CNN [25] model that can produce

joint coordinates using only the mmWave radar, as shown in Fig. 4.1.

Customization at Home: The initial mmWave-CNN can have a poor performance

when a new patient starts using it at home, as demonstrated in Section 4.2. There-

fore, we personalize it to the new user before continuous execution in three steps.

First, we activate RGB cameras for a short duration and generate the 2D joint co-

ordinates by employing the RGB-CNN model used in the initial training. Then,

39

Video Camera

mmWave Radar

Active during inference & training.
A CNN converts mmWave
signals to joint coordinates.

Active only during
training to produce
reference joint coordinates. Processing

Hardware

Figure 4.1: Illustration of the target rehabilitation system. The RGB camera is used
only during training to generate the reference joint coordinates when the initial
model is customized to the target user. Once the model that uses mmWave signals
is trained, only the mmWave radar is used for inference.

the 3D joint coordinates are found in the same way as the initial training. Finally,

we incrementally train the mmWave-CNN using these reference coordinates and

mmWave signals as inputs. After the customization, the new user uses the product

only with mmWave signals and the inference of mmWave-CNN model for rehabili-

tation feedback. Running RGB-CNN for RGB image inference and mmWave-CNN

for both on-chip training and inference are not feasible on a conventional SoC,

as demonstrated in Section 4.2. Therefore, we propose an IMC-based hardware

accelerator to perform these tasks.

In summary, the proposed PHR pipeline consists of (i) taking RGB images

with two cameras, (ii) inferring 2D human key points from the images using RGB-

CNN, (iii) obtaining ground truth 3D human joints by triangulating two 2D human

joints, and (iv) training and inferring the human joints with mmWave signals using

mmWave-CNN.

40

4.1.2 In-Memory Computing-based Hardware Acceleration

We employ an in-memory computing (IMC)-based hardware accelerator because

it combines highly-dense storage and computation into the same hardware unit. It

also alleviates the latency and energy consumption of memory accesses. Energy-

efficient DNN accelerators utilizing IMC technology [3, 1, 6] have been proposed

in the literature in the last few years. IMC-based architectures integrate multiple

processing units, called tiles, into the system, as shown in Fig. 4.2. These tiles are

connected via a network-on-chip (NoC) for the data communication of activations,

errors, and gradients. Each tile has processing elements along with input/output

buffers and an accumulator. Processing elements are composed of crossbar ar-

rays that store the neural network model weights and perform computations and

peripheral circuits such as ADCs, adder trees, and buffers. This work uses the

mapping methodology described in [41] to map the weights onto the crossbar

arrays. We used a ReRAM-based IMC architecture for inference and training. We

also include an SRAM-based hardware block for training to avoid excessive writes

to the ReRAM crossbar arrays because of the write endurance issues of ReRAM. The

IMC architecture also includes activation units, buffers, and accumulators. More

detailed discussions about the on-chip training on IMC accelerators and hardware

configurations are provided in Section 4.2.

4.1.3 On-Chip Training for Personalization of mmWave-CNN

To customize the inference model, mmWave-CNN, to a new user, we first need the

ground truth joint coordinates. We use two RGB cameras on the edge device to get

41

precise 3D joint coordinates, as described in Section 4.1.1 and Fig. 4.1. The reason for

utilizing two RGB cameras is that we can generate the ground truth with minimum

error with two RGB images. Two RGB images are then processed by the RGB-CNN

model. For the RGB-CNN model, we followed the structure given in [35], which

has 28.5M parameters with a backbone pre-trained on the ImageNet dataset. Then,

we generate 3D human joint coordinates by triangulating a pair of 2D human joints.

The mmWave radar sensor provides inputs to mmWave-CNN model. The mmWave-

CNN [25] is composed of 3.2M parameters with two convolutional layers followed

by two fully connected layers. The radar sensor generates a point cloud which is

composed of points reflected from an object in sight. For each point, the radar

sensor generates five features which will be used as inputs for the mmWave-CNN

model. These are x, y, and z coordinates, the Doppler velocity, and the reflection

intensity. Then, using the radar data, we customize the baseline mmWave-CNN

model to the new user’s body pose with the on-chip training on the IMC hardware

accelerator. The training consists of four parts: feedforward, error calculation,

weight gradient calculation, and weight update. Each step requires DRAM access

to store and load the necessary data, as there are thousands of input data. The

accuracy and on-chip training results are discussed in Section 4.2.3 and 4.2.5. After

the on-chip training, the mmWave-CNN is customized for the new user. Finally, the

last step in the framework is the customized mmWave-CNN model inference that is

performed on the IMC accelerator using the tiles of crossbar arrays.

42

Figure 4.2: The architecture of IMC-based hardware accelerator. Feedforward, error
calculation, and weight update stages are performed in the accelerator tiles whereas
the weight gradient calculation is executed in the weight gradient block. Tiles are
connected via NoC. (R: NoC Router)

4.1.4 Hardware Implementation and Exploration

The crossbar array sizes in each tile affect the structure and performance of the

IMC hardware accelerator. Smaller crossbar arrays increase the number of tiles,

resulting in traffic congestion in the NoC because of high data movement. In

contrast, larger array sizes reduce the utilization of the IMC accelerator. Thus, it

causes an area overhead compared to small crossbar sizes. Therefore, we explore

the hardware parameters to achieve optimal energy and area efficiency, as discussed

in Section 4.2.5.

ReRAM-based architectures are vulnerable to the write endurance problem and

nonlinear properties. These properties include device-to-device (D2D) and cycle-

to-cycle (C2C) variations, long-term potentiation (LTP), and long-term depression

(LTD) [39]. Therefore, we analyzed the nonlinear properties of ReRAM-based

IMC hardware accelerator design. Detailed explorations of nonlinear properties,

variations, and their effects on the accuracy are given in Section 4.2.5. The on-chip

training for the customization is an incremental training approach that requires

43

less number of epochs, thus the lower number of writes on the crossbar arrays.

Therefore, our framework can achieve better accuracy without assuming limitless

writes.

We use the following parameters in our IMC-based accelerator design: an ADC

precision of 4 bits, 8-bit quantization for weights and activations, one bit per ReRAM

cell, an Roff/Ron ratio of 100, and 1 GHz operating frequency, and 32 nm technology

node [3]. We employ NeuroSim V2.1 [41] to evaluate the performance and area of

the proposed ReRAM-based IMC hardware accelerator and data communication

between the main memory and the accelerator. NeuroSim V2.1 supports both

inference and training on-chip. Only the weight gradient calculation part requires

extra hardware (SRAM) for the on-chip training because this stage needs heavy

writing of errors into the arrays along the batch. Feedforward, error calculation,

and weight update stages are implemented on the ReRAM tiles. Data movement

within the accelerator between tiles via an NoC is evaluated using a customized

version of BookSim [2]. In this version, we use a traffic trace-based cycle-accurate

execution using a mesh NoC architecture.

4.2 Experimental Results

4.2.1 Experimental setup

We conduct our experiments with the mRI open-source mmWave human pose

estimation dataset [26]. mRI offers over 160K synchronized 3D point cloud from

mmWave radar (TI IWR1443) [66], and ground truth 2D and 3D human joints

44

from two Kinect V2 cameras [67]. It evaluates ten clinical-suggested rehabilitation

movements covering the main parts of the human body, performed by twenty

diverse subjects. The dataset benchmarks mmWave-based human pose estimation

using HRNet-W32 [35] (images to 2D key points) and MARS [25] (mmWave point

cloud to 3D human joints). HRNet-W32 and MARS generate 17 human joint points

in 2D and 3D space, respectively. We implemented these CNN-based networks as

the RGB-CNN and mmWave-CNN models using PyTorch. For the initial training,

we used an SGD optimizer with momentum (β = 0.9), and an initial learning rate

of 0.001 for 100 epochs with a batch size of 128.

4.2.2 Baseline Accuracy before Customization

We trained the baseline MARS model using half of the user subjects in the dataset.

To produce accurate results, we generated three random sets given in Table 4.1.

Then, the trained baseline model is tested against the remaining ten subjects for

each set. We used Mean Per Joint Point Error (MPJPE) and Procrustes Analysis

MPJPE (PA-MPJPE) metrics, which are widely used for human joint estimation

studies [68]. MPJPE calculates the mean Euclidean distance between the reference

Table 4.1: Random set configurations for experimental evaluations and training
results of the baseline mmWave-CNN model.

Sets Training Subjects Test Subjects MPJPE
(mm)

PA-MPJPE
(mm)

1 1-3,7,9,14,16,17,19,20 4-6,8,10-13,15,18 130.7 ± 3.4 76.4 ± 1.4
2 1,2,5-7,9,13,17-19 3,4,8,10-12,14-16,20 133.5 ± 2.5 78.4 ± 1.9
3 3,5,6,8,10-12,14,18,20 1,2,4,7,9,13,15-17,19 134.5 ± 1.2 78.5 ± 1.1

45

and the prediction joints. PA-MPJPE uses a similarity transformation for a further

rigid alignment.

The mmWave-CNN model achieves 130.7 mm MPJPE and 76.4 mm PA-MPJPE

for the test subjects in Set-1. In contrast, the corresponding errors for the subjects in

the training set are 97.8 mm and 57.1 mm, which is about 25% lower. The results are

similar for other sets with slightly over 130.7 mm MPJPE and 76.4 mm PA-MPJPE for

the test subjects, as shown in Table 4.1. These results show that the initial model can

achieve very high accuracy for the known subjects, but the accuracy degrades for

new users. Even if one can improve the test accuracy by adding users to the training

set, it is impractical to add all potential users who will buy the rehabilitation system.

Therefore, enabling incremental online training at the edge is imperative to adapt the initial

model to new users.

4.2.3 Test Accuracy after Customizing to New Users

On-device training for customization comprises three steps:

1. The video camera is activated for a short period (2.5 minutes, i.e., 4500 frames),

2. The RGB-CNN model inference generates the ground truth joint coordinates

used for supervision,

3. The baseline mmWave-CNN model is incrementally trained using the point

cloud data from the mmWave radar sensor as input and the ground truth

joint coordinates from step 2 as labels.

46

1 3 0 . 4
9 8 . 8

7 6 . 2
5 8 . 3

1 3 1 . 2
8 9 . 2

7 6 . 5
5 7 . 2

1 3 5 . 8
9 5 . 2

7 8 . 9
5 6 . 2

4 5 6 8 1 0 1 1 1 2 1 3 1 5 1 8 A v e r a g e0
4 0
8 0

1 2 0
1 6 0
2 0 0

 B e f o r e P e r s o n a l i z a t i o n M P J P E A f t e r P e r s o n a l i z a t i o n M P J P E B e f o r e P e r s o n a l i z a t i o n P A - M P J P E A f t e r P e r s o n a l i z a t i o n P A - M P J P E
MP

JP
E (

mm
)

(a)

(b)

(c)

3 4 8 1 0 1 1 1 2 1 4 1 5 1 6 2 0 A v e r a g e0
4 0
8 0

1 2 0
1 6 0
2 0 0

MP
JP

E (
mm

)

1 2 4 7 9 1 3 1 5 1 6 1 7 1 9 A v e r a g e0
4 0
8 0

1 2 0
1 6 0
2 0 0

T e s t S u b j e c t s

MP
JP

E (
mm

)

Figure 4.3: MPJPE and PA-MPJPE comparisons for all three random sets. Results
show MPJPE and PA MPJPE before customization using 10 subjects for training
and after customization which is customized for each test subject separately. Parts
(a), (b), and (c) represent Set-1, Set-2, and Set-3 results, respectively. As they are
randomly split, each plot shows the results for different subjects.

We employ the three random sets used for baseline accuracy analysis (Table 4.1)

to evaluate the proposed on-device learning technique. Specifically, we customize

the baseline model for each subject in the test subjects one-by-one. Fig. 4.3 compares

the accuracy of the personalized model to the baseline model. Both MPJPE and

PA-MPJPE results improve significantly for all users in Set-1, as shown in Fig. 4.3(a).

On average, the customization improves the MPJPE and PA-MPJPE by 23.89% and

22.94%, respectively. Most importantly, the average MPJPE and PA-MPJPE reduce

47

Table 4.2: Hardware results for mmWave-CNN model inference and training on
Jetson Xavier NX with 2 configurations and our framework with 2 configurations
and the speedup comparisons. 128× 128 and 256× 256 represent the crossbar array
sizes. (P: PHR, J: Jetson)

Configurations Jetson-1 Jetson-2 PHR-1 Improvement (×) PHR-2 Improvement (×)
(2 CPUs) (6 CPUs) (128x128) P-1 vs J-1 P-1 vs J-2 (256x256) P-2 vs J-1 P-2 vs J-2

Inference
Power (mW) 3379.0 8724.0 12.1 277.8 717.3 25.7 131.4 339.2
Time per frame (µs) 162.2 149.7 10.8 15.0 13.8 4.2 38.5 35.5
Energy per frame (µJ) 548.0 1305.9 1.1 488.8 1162.2 0.9 611.1 1452.7

Training
Power (mW) 9761.4 9986.0 2954.5 3.3 3.4 4223.3 2.3 2.4
Time per frame (µs) 306.9 299.4 32.3 9.5 9.2 21.8 14.0 13.7
Energy per frame (µJ) 2995.4 2989.6 95.6 31.3 31.2 92.3 32.4 32.3

to 98.8 mm and 58.3 mm, within only 2 mm of their training accuracy. Fig. 4.3(b)

and Fig. 4.3(c) show that these improvements are observed for Set-2 and Set-3 as

well. The MPJPE improvement ranges from 17.3 mm (14.92%) to 87.1 mm (45.82%),

while PA-MPJPE improvement is between 9.0 mm (13.22%) to 39.5 mm (36.83%).

In conclusion, the customized model performs consistently and significantly better

than the baseline model for all subjects in each random set, enabling accurate

feedback necessary for home-based rehabilitation.

4.2.4 Energy and Performance Results

Home-based rehabilitation systems should run on a compact edge device for the

practicality of the approach. Therefore, we implemented the baseline model on an

Nvidia Jetson Xavier NX [30] board for hardware performance comparisons. The

Jetson board has 6 Carmel Arm CPU cores, an Nvidia GPU with 384 CUDA cores,

and 48 tensor units. We compared the hardware results of our framework against

the Jetson board for both training and inference.

Model Inference: We used two different hardware configurations for performance

48

comparisons. Jetson-1 and Jetson-2 shown in Table 4.2 have 2 and 6 active CPU cores

(1.9 GHz) and GPU (1.1 GHz) on the board for processing, respectively. The Jetson

board’s power consumption is on the Watts scale (3.38 and 8.7 W). The latency per

frame varies between 149.7 µs and 162.2 µs. The lower energy consumption per

frame comes from Jetson-1 with 548 µJ as it utilizes 2 CPU cores.

Similarly, we evaluated the proposed IMC accelerator using two configurations.

The crossbar sizes are selected as 128× 128 and 256× 256 for PHR-1, and PHR-2,

respectively. The detailed hardware exploration is discussed in Section 4.2.5. Our

accelerator’s power consumption is on the scale of milliwatts (12.1 to 25.7 mW)

which results in improvements up to 717.3× compared to the Jetson board. The

latency per frame are 10.8 µs and 4.2 µs for PHR-1 and PHR-2, respectively. When

we compare against Jetson configurations, PHR-2 shows a higher speedup with

38.5× and 35.5× against Jetson-1 and Jetson-2, respectively. We see considerable im-

provements in energy consumption as IMC accelerators are highly energy-efficient.

The energy consumption per frame of PHR is 1.1 and 0.9 µJ for PHR-1 and PHR-2,

respectively. PHR-2 has a greater improvement in energy consumption with 611.1×

and 1452.7× compared against Jetson-1 and Jetson-2, respectively, as it has less

number of tiles and less NoC energy.

Model Training: Table 2 also shows the model training results of our proposed

framework and Jetson configurations. We include two sets of results, one per

epoch and one per frame. The latency per epoch for Jetson-1 and Jetson-2 are

measured as 1.37 and 1.34 seconds, whereas PHR-1 and PHR-2 achieve 0.14 and

0.09 seconds, respectively. PHR-2 shows a higher speedup of 14.0× and 13.7×

49

against Jetson-1 and Jetson-2 configurations. The energy consumption of Jetson-

1 and Jetson-2 configurations are both 13.4 J. PHR-1 and PHR-2 achieve 0.43 J

and 0.41 J, respectively, which results in an improvement of 31.3× and 31.2× for

PHR-1 and 32.4× and 32.3× against Jetson-1 and Jetson-2, respectively. The energy

consumption reduction of training is lower than that of inference. The reason

is the high DRAM access required in the training and the gradient calculation

performed in the IMC accelerator’s SRAM block. SRAM IMC consumes higher

energy than the ReRAM crossbar array but because of the write endurance problem

seen in ReRAM crossbar arrays, writing too much data on ReRAM is not practical.

PHR-1 achieves an improvement of 3.3× and 3.4× against Jetson-1 and Jetson-2

configurations, respectively while PHR-2 achieves an improvement of 32.3× and

2.4× against Jetson-1 and Jetson-2 configurations, respectively.

Our framework also utilizes HRNet-W32 as the RGB-CNN model for the ground

truth joint coordinate generation. Table 4.3 compares the results on the Nvidia

Jetson board to the proposed framework. The energy consumption per frame is 9.1

J with a latency of 622.2 ms for Jetson, while they are 0.05 J and 9.7 ms for PHR. The

energy consumption and latency of RGB-CNN inference are higher than mmWave-

CNN model because HRNet-W32 is a deeper network with densely connected layers.

It requires more DRAM accesses for data movement as all the network weights

do not fit in the accelerator. Despite this, it can provide sufficient performance to

process at runtime with over 30 FPS.

50

Table 4.3: Hardware results for RGB-CNN inference on Jetson Xavier NX with 6
CPU cores and our framework with 256× 256 crossbars.

Jetson PHR Improvement (×)
Power (W) 14.5 0.4 34.8
Time per frame (ms) 622.2 9.7 64.1
Energy per frame (J) 9.1 0.05 782

4.2.5 Hardware Architecture Exploration

Crossbar Array Size: We next analyze the effect of the crossbar sizes in each tile.

Previous sections considered only 128× 128 and 256× 256 array sizes. When we

reduce the size to 64 × 64, the inference latency (356.7 µs) becomes higher than

the Jetson board latency, making the configuration impractical. At the same time,

an array size larger than 256 × 256 reduces the utilization to less than 50% and

also increases the area overhead. Therefore, we decided to use only PHR-1 and

7 6 . 5
5 7 . 2

5 3 . 2

3 4 8 1 0 1 1 1 2 1 4 1 5 1 6 2 0 A v e r a g e0
2 0
4 0
6 0
8 0

1 0 0
 B a s e l i n e P A - M P J P E N o n l i n e a r P A - M P J P E I d e a l P A - M P J P E

T e s t S u b j e c t s

PA
-M

PJ
PE

 (m
m)

Figure 4.4: PA-MPJPE comparisons for the baseline model (Baseline), a customized
model with nonlinear properties (Nonlinear), and a customized model without
nonlinear properties (Ideal) for 10 test subjects from Set-2.

51

PHR-2 configurations which have 128× 128 and 256× 256 crossbar array sizes in

our evaluations.

Nonlinear Properties of ReRAM: Our analysis assumes a C2C variation of 2%, D2D

variation of 0.1%, and nonlinearity of 0.5/-0.5 following [38]. An ideal case would

have no variations and nonlinearities. Fig. 4.4 compares the PA-MPJPE with the

selected nonlinear properties and the ideal case for user Set-2. On average, we see

an improvement of 24.3% and 29.8% against the baseline model for Nonlinear and

Ideal cases, respectively. The difference between the cases varies between 3.1% and

8.1%, with an average of 5.5% for ten subjects. Note that even with the nonlinear

properties of ReRAM, we can achieve significant improvements compared to the

baseline model after the customization.

52

5 proposed work – 1: communication-aware sparse

neural network optimization

Deep neural networks (DNNs) exhibit a high degree of redundancy due to dense

interconnections between successive layers. Besides posing overfitting risks, redun-

dant connections increase the communication cost and implementation overhead,

thus leading to lower performance and energy efficiency when implemented in

hardware. Indeed, many pruning techniques aim at removing DNN connections

with minimal impact on their accuracy [69, 70, 71]. Sparse neural networks are pre-

ferred since they can enable minimal communication and implementation overhead,

thus significantly reducing the computation and memory requirements.

Sparse inter-layer connections enable significantly faster and more energy-

efficient DNNs. However, sparsity alone is not sufficient since good algorithmic

performance does not necessarily translate into real performance on hardware. For

instance, some inter-layer connections can lead to long paths when mapped on

hardware. Consequently, they can undermine the overall hardware performance

due to high communication latency and energy costs. For example, the sparse

evolutionary training (SET) approach [72] drastically decreases the training time

using sparse graphs instead of pruning a trained network; this makes the training

scalable, while improving the test accuracy on a wide range of datasets, includ-

ing multi-layer perceptron (MLP) and convolutional neural networks (CNNs) for

unsupervised and supervised learning.

Although it can achieve higher accuracies, the networks remain oblivious to

53

Figure 5.1: Percentage contribution to inference latency for various networks on
two datasets. The communication latency can take up to 43% of the total inference
latency.

the real hardware. The performance of DNNs on real hardware is critical since it

determines the inference latency and power consumption. For example, a DNN tar-

geting real-time applications, such as autonomous driving, may become impractical

if the inference latency violates the timing constraints. To analyze the inference la-

tency, we perform experiments using an in-memory computing (IMC)-based DNN

accelerator where the inter-layer communication for activation data movement is

implemented via a network-on-chip (NoC). We use a state-of-the-art reinforcement

learning based mapping algorithm [73] with unpruned networks using two dif-

ferent datasets. Our evaluations show that the communication between the DNN

layers alone can take up to 43% of the total inference latency for a wide range of

DNNs, as depicted in Figure 5.1.

Although sparse training can achieve a higher accuracy than a network with no

54

Target DNNTarget Architecture

Datasets

Optimization Parameters
Accuracy & sparsity targets, communication latency

Mapping
(Section 3.2)

…

Hardware-Aware Training

Replace the layers with
a sparse graph (Eqn. 4)

Execute next
training epoch

Prune links based on
weight and distance

(Section 3.3.1)

Add new links based on distance
and sparsity target

(Section 3.3.2)

Optimized Sparse
Network

NoC router

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Inputs

Figure 5.2: Overview of the proposed approach. It consists of mapping the target
DNN onto the target architecture using latency-aware mapping and hardware-
aware dynamic sparse training. The training process first replaces the DNN layers
with sparse graphs; then, at the end of each epoch, employs hardware-aware
pruning and link addition. Each circle in the target DNN represents the feature
map of DNNs; each link in the target DNN represents the weights of DNNs. The
weights are mapped onto the in-memory computing (IMC) tiles with the same color
as the corresponding links. The circles and the rectangles in the target architecture
denote the NoC routers and IMC tiles, respectively.

pruned links [74], if the network remains oblivious to the target hardware while

pruning and adding links, then, this can lead to unacceptable latency and power

overheads. Therefore, there is a strong need for hardware and communication-aware

sparse training methodologies that can lead to shorter communication distances

when the DNN layers are mapped onto hardware resources.

Starting from these observations, we propose a novel communication-aware

sparse neural network optimization technique applicable to both fully connected

and convolutional layers. The first step of the proposed technique maps the DNN

layers on the target hardware resources, e.g., to the processing tiles of an NoC.

Our proposed mapping technique minimizes the distance the packets between

two consecutive DNN layers need to travel in the NoC which helps reducing the

overall communication latency. The second step performs hardware-aware dynamic

55

sparse training. Suppose two nodes in the DNN are connected by links with non-

zero weights. If these DNN nodes are mapped onto different tiles on the NoC,

the activations generated between these nodes will incur communication costs

during inference. The proposed technique prunes the p−percent of the weights

based on the significance of weight columns towards any inference decision per

unit communication cost. Finally, we maintain the target sparsity throughout the

training process by choosing an equal number of weight columns (p−percent) with

the smallest communication cost and adding them back to the network at the end

of each epoch.

56

6 proposed work – 2: carbon footprint optimization

The artificial intelligence (AI) era is rising at a pace not seen before. The machine

learning model sizes and required computations increased five orders of magni-

tude from 2018 to 2022, and we expect to see this trend continue. The increase in

computation resulted in high energy consumption and resource usage, which led

to an unsustainable environment and a high carbon footprint. Considering the

trend in AI computing, National Science Foundation started a program that targets

a sustainable computing program in 2022. Sustainable AI is a promising solution

that targets environmentally sustainable models by measuring and reducing the

carbon footprint of the development and production of AI models.

For sustainable AI, developing tools is crucial to detect, model, and alleviate

carbon footprint activity. Existing carbon footprint tools [75, 76, 77, 78, 79, 80, 81]

monitor central processing units (CPU), graphical processing units (GPU), and

memory consumptions. However, in recent years, custom hardware designs like

machine learning accelerators have been commonly used for AI models’ training

and inference processes because of their superior performance and energy efficiency.

These accelerators have been used in various systems, from servers to edge devices.

For example, on-device learning using accelerators gets interest as it improves data

privacy [82]. On the other hand, using federated learning for a small ML model can

have a comparable carbon footprint with orders of magnitude bigger transformer

models [83]. Therefore, it is also essential to reduce the carbon footprint at the

edge. Nevertheless, the lack of carbon footprint tools for hardware accelerators

57

prevents researchers from analyzing the behavior of the hardware and AI models

in the development and deployment processes.

Current tools use performance counters to track the CPU, GPU, and memory

activity. These counters measure the number of memory accesses, energy con-

sumption, and execution time. Measurements are executed in real-time and have a

negligible overhead on the runtime of the process and energy consumption. How-

ever, they are not compatible with simulation tools widely used for designing

custom hardware. Simulation tools enable accurate and fast design space explo-

ration before realizing the hardware design. Tracking carbon footprint in this stage

is significant because, after the tape-out of the design, it is challenging to change

the behavior of the hardware to adjust to the carbon footprint activity. Therefore,

tracking custom hardware’s carbon footprint using simulators is critical for the

environment and society.

In addition to tracking carbon footprints, it is essential to implement strategies

for reducing them. Data centers, for example, strive to offset their operational

carbon footprint by incorporating renewable energy sources. On the other hand,

in the realm of ML models, several techniques have been employed to minimize

resource and operational consumption. One such approach is model layer freezing,

which aims to decrease memory usage and training time during ML model training

by selectively freezing specific layers and excluding them from the backpropagation

process. This technique helps conserve resources and optimize the training process.

However, its impact on the carbon footprint is overlooked.

We propose integrating a carbon footprint tracker with an in-memory comput-

58

Python
Wrapper

IMC Simulator

N
et

w
or

k

Datasets

Accuracy

Training
Inference

Carbon Footprint
Tracker

Latency
TOPS

Carbon
FootprintEnergy

Weights
Activations
Gradients

C++

Ar
ch

ite
ct

ur
e

Tile Tile Tile

Tile Tile Tile

Ac
tiv

at
io

n
Bu

ff
er

AccumulatorSRAM
(Weight Gradient)

Location

Figure 6.1: Overview of the proposed framework. Inputs to the framework are
the target network, target architecture, dataset, and location. First, the training or
inference part is performed in the Python wrapper using the PyTorch library. This
wrapper outputs the accuracy based on the quantization. Then, quantized weights,
activations, and gradients are sent to the IMC simulator. This simulator outputs
latency and TOPS. Then, energy consumption and location information are used
by the carbon footprint tracker for each epoch, outputting the carbon footprint.

ing (IMC) based machine learning accelerator simulator. This simulator tracks

the custom hardware’s carbon footprint and electricity consumption for training

and inference of machine learning models. Using this tool, the hardware designers

can analyze the carbon footprint performance of the custom hardware in the early

design stage by varying the hardware configuration. On top of carbon footprint,

our tool also provides other hardware metrics like latency, energy consumption,

TOPS, and area that helps the design of the hardware. Furthermore, we integrate

various AI models for sustainability analyses of different aspects of machine learn-

ing algorithms. Machine learning model developers can analyze the training and

inference behavior of the AI models they develop and try to reduce the design’s

carbon footprint for deployment. We evaluate the platform for popular CNN mod-

els regarding carbon footprint with various metrics like quantization, hardware

parameters, and layer freezing to show that designing sustainable and robust AI

59

models with energy-efficient machine-learning accelerators is possible. Moreover,

we propose a carbon footprint optimization algorithm that utilizes a characteriza-

tion procedure that shows the network behavior for various freezing scenarios. This

characterization procedure constitutes the algorithm’s backbone and guides the

algorithm’s search. The operation of the optimization framework can be summa-

rized in the following steps. First, we perform trial training runs where we freeze

particular layers at specific epochs, considering the vast design space. Second, we

fit curves to interpolate the freezing data for epochs where information is missing,

completing the overall understanding. Third, we provide the data obtained from

the characterization process to the algorithm, which explores the design space to

identify the optimal freezing epochs that minimize carbon footprint while main-

taining negligible accuracy loss. Furthermore, we discussed the potential ways to

minimize the carbon footprint of custom hardware.

60

7 other work: das: dynamic adaptive scheduling for

energy-efficient heterogeneous socs

7.1 Dynamic Adaptive Scheduling Framework

7.1.1 Overview and Preliminaries

This work considers streaming applications that can be mod- eled by a data flow

graph (DFG). Consecutive data frames are pipelined through the tasks in the graph.

Unlike the current practice, which is limited to a single scheduler, DAS allows the

OS to choose one scheduling policy π ∈ ΠS = {F,S}, where F and S refer to the fast

and slow schedulers, respectively. Once the predecessors of a task are completed,

the OS can call either a fast (π = F) or a slow scheduler (π = S) as a function

of the system state and workload. The OS collects a set of performance counters

during the workload execution to enable two aspects for the DAS framework: (1)

precise assessment of the system state, (2) desirable features for the classifier to

dynamically switch between the fast and slow schedulers.

Table 7.1: Type of performance counters used by DAS framework

Type Features

Task
Task ID, Execution time, Power consumption,

Depth of task in DFG, Application ID,
Predecessor task ID and cluster IDs, Application type

Processing
Element

(PE)

Earliest time when PE is ready to execute,
Earliest availability time of each cluster,

PE utilization, Communication cost
System Input data rate

61

Table 7.1 presents the performance counters collected by DAS. For a DSSoC

with 19 PEs, it uses 62 counters. The goal of the fast scheduler F is to approach the

theoretically minimum (i.e., zero) scheduling overhead by making decisions in a

few cycles with a minimum number of operations. In contrast, the slow scheduler

S aims to handle more complex scenarios when the task wait times dominate the

execution times. The goal of DAS is to outperform both underlying schedulers in terms of

execution time and EDP by dynamically switching between them as a function of system

state and workload.

7.1.2 Zero-Delay DAS Preselection Classifier

The first step of DAS is selecting the fast or slow scheduler. Since this decision

is on the critical path of the fast scheduler, we must optimize it to approach our

zero overhead goal. One of the novel contributions of DAS is recognizing this

selection as a deterministic task that will eventually be executed with probability

one. Hence, we prefetch the relevant features required for this decision to a pre-

allocated local register. To minimize the overhead, we re-use a subset of counters

shown in Table 7.1 to make this decision, discussed in Section 7.2.2.

The OS periodically refreshes the performance counters to reflect the current sys-

tem state. Each time the features are refreshed, DAS preselection classifier updates

its scheduler selection which will be used for the next ready task. This decision will

always be up to date since it uses the features that reflect the most recent system

state. This way, DAS determines which scheduler should be called even before

a task is ready for scheduling. Hence, the preselection classifier introduces zero

62

latency and minimal energy overhead, as described next.

Offline Classifier Design: The first step to design the pre- selection classifier is

generating the training data based on the domain applications known at design

time. Each scenario in the training data consists of concurrent applications and

their respective data rates (e.g., a combination of WiFi transmitter and receiver

chains, at a specific upload and download speed). To this end, we run each scenario

twice, as described in Fig. 7.1.

First Execution: The instrumentation enables us to run both fast and slow schedulers

each time a task scheduling decision is made. If the decisions of the fast (DF) and

slow (DS) schedulers for a task Ti are identical, then we label task Ti with F (i.e., the

fast scheduler) and store the recent performance counters. If the schedulers return

different decisions, then the label is left as pending, and the execution continues by

DF = F (Ti)
DS = S (Ti)

DS == DF

Label Ti
with F

Leave label for
Ti Pending

N
ext ready
task, T

i

True

End of simulation
Final metric MF

False

Pending ß F

Execution 1 Execution 2
Always use the
Slow Scheduler

Final Metric MS (e.g
energy, performance)

Pending ß S
True False
MF better than MS

Feature
Selection
(Offline)

DAS
Preselection

Classifier

Training
(Offline)

Oracle Generation (Offline)

Deploy at
runtime
(Online)

More tasks?

Proceed
w

ith D
F

True
False

Figure 7.1: Flowchart describing the flow of the DAS framework: Oracle generation,
feature selection, and training a model for the classifier.

63

following DF, as shown in Fig. 7.1. At the end, the training data contains a mixture

of both labeled (F) and pending decisions.

Second Execution: The same scenario is executed, this time by always following DS.

At the end, we analyze the target metric, such as the execution time. If the slow

scheduler achieves a better result, the pending labels are replaced with S to indicate

that the slow scheduler is preferred despite its larger overhead. Otherwise, we

conclude that the fast scheduler’s lower overhead pays off and replace the pending

labels with F. An alternative approach is evaluating each pending label individually.

However, this approach will not be scalable since the decision at time tk affects the

remaining execution.

We generate training data using these two runs as described in Section 7.2.1.

Then, we design a low-overhead classifier using machine learning and feature

selection techniques to select the fast or slow scheduler at runtime, as shown in

Fig. 7.1.

Online Use of the Classifier: At runtime, a background pro- cess periodically

updates a preallocated local memory with a small subset of performance counters

required by the classifier. After each update, the classifier determines whether

the fast F or slow S scheduler should be used for the next available task. When

a new ready task becomes available, we know which scheduler is a better choice.

Therefore, DAS does not incur any extra delay on the critical path. Moreover, it has

a negligible energy overhead, as demonstrated in Section 7.2.

64

7.1.3 Fast & Slow (Sophisticated) (F&S) Schedulers

The DAS framework can work with any choice of fast and slow scheduling algo-

rithms. This work uses a LUT implementation as the fast scheduler since the goal

of the fast scheduler is to achieve almost zero overhead. The LUT stores the most

energy-efficient processor in the system for each known task in the target domain.

Unknown tasks are mapped to the next available CPU core. Hence, the only extra

delay on the critical path and overhead is the LUT access. To profile the overhead,

we developed an implementation using C with inline assembly code. Experiments

show that our fast scheduler takes ∼7.2 cycles (6 ns on Arm Cortex-A53 at 1.2 GHz) on

average and incurs negligible (2.3 nJ) energy overhead.

This work uses a commonly used heuristic, earliest task first (ETF), as the slow

scheduler [84]. ETF is chosen since it performs a comprehensive search to make

a decision when the SoC is loaded with many tasks. It recursively iter- ates over

the ready tasks and processors to find the schedule with the fastest finish time, as

shown in Algorithm 4. Hence, its computational complexity is quadratic on the

Algorithm 4 ETF Scheduler
1: while ready queue T is not empty do
2: for task Ti ∈ T do
3: // P = set of PEs
4: for PE pj ∈ P do
5: FTTi,pj

= Compute the finish time of Ti on pj

6: end for
7: end for
8: (T ′, p ′) = Find the task & PE pair that has the minimum FT
9: Assign task T ′ to PE p ′

10: end while

65

number of ready tasks.

7.2 Experimental Evaluations

7.2.1 Experimental Setup

Domain Applications: The DAS framework is evalu- ated using five real-world

streaming applications: 1) range detection; 2) temporal mitigation; 3) WiFi-transmitter;

4) WiFi-receiver applications; and 5) a proprietary industrial application (App-

1) [84, 85]. We construct 40 different workloads by mixing applications in different

ratios for our evaluations. More information is provided in our GitHub [84].

Emulation Environment: One of our key goals in this study is to conduct a realistic

energy and runtime overhead analy- sis. For this purpose, we leverage an open-

source Linux-based emulation framework [85]. For our analysis, we incorporate

LUT and ETF schedulers into this emulation environment. We generate a wide

range of workloads – ranging from all application instances belonging to a single

application to a uniform distribution from all five applications. We measure the

trend between the number of ready tasks and the scheduling overhead of ETF on

the Xilinx Zynq ZCU102. Based on these measurements, we formulate the ETF

scheduling overhead using a quadratic equation to evaluate the DAS scheduler.

Simulation Environment: We use DS3 [84], an open-source DSSoC simulation

framework, for the detailed evaluation of DAS. DS3 includes built-in scheduling

algorithms, models for PEs, interconnect, and memory systems. The framework

has been validated with Xilinx Zynq ZCU102 and Odroid-XU3.

66

0 600 1200 1800 24000

7

14

21

0 30 60 90 120

9
18
27
36

0 10000 20000 30000

3

6

9

12

0 600 1200 1800 24000.1

1

10

0 30 60 90 120

1

10

0 10000 20000 30000

1

10

100

1000

Av
g.

 E
xe

. T
im

e
(m

s)

Data Rate (Mbps)

 LUT ETF ETF-ideal DAS
Workload-1 Workload-2 Workload-3

Av
g.

 E
xe

. T
im

e
(m

s)

Data Rate (Mbps)

(d) (e) (f)

Av
g.

 E
xe

. T
im

e
(m

s)

Data Rate (Mbps)

ED
P

(m
J-

s)

Data Rate (Mbps)

ED
P

(m
J-

s)

Data Rate (Mbps)

ED
P

(m
J-

s)

Data Rate (Mbps)

(a) (b) (c)

Figure 7.2: Comparison of (a)–(c) average execution time and (d)–(f) EDP between
DAS, LUT, ETF, and ETF-ideal for three different workloads.

DSSoC Configuration: We construct a DSSoC configuration that comprises clusters

of general-purpose cores and hardware accelerators. The application domains used

in this study are wireless communications and radar systems. The DSSoC used

in our experiments uses the Arm big.LITTLE architecture with 4 cores each. We

also include dedicated accelerators for fast Fourier transform (FFT), forward error

correction (FEC), finite impulse response (FIR), and a systolic array processor

(SAP). We include 4 cores each for the FFT and FIR accelerators, one core for

the FEC, and two cores of the SAP. In total, the DSSoC integrates 19 PEs with a

mesh-based network-on-chip to enable efficient on-chip data movement.

7.2.2 Exploration of ML Techniques and Feature Space for DAS

Machine Learning Technique Exploration: We explore different classifiers to co-

optimize the classification accuracy and model size towards our minimal overhead

67

31
0

76
0

13
52

16
12

18
95

20
11

20
98

0
20
40
60
80

100

Data Rate (Mbps)

 LUT ETF

D
ec

is
io

n
Pe

rc
en

ta
ge

 (%
)

0

100

200

300

400
 LUT ETF DAS Energy C

onsum
ption (mJ)

Figure 7.3: Decisions taken by the DAS framework as bar plots and total scheduling
energy overheads of LUT, ETF, and DAS as line plots.

goal. Specifically, we investigated support vector classifiers (SVC), decision tree

(DT), multi-layer perceptron (MLP), and logistic regression (LR). The training

process with SVCs exceeded 24 h, rendering it infeasible. The latency and storage

requirements of the MLP (one hidden layer and 16 neurons) did not fit the low-

overhead requirements. Therefore, these two techniques are excluded from the

rest of the analysis. Table 7.2 summarizes the classification accuracy and storage

overheads for the LR and DTs as a function of the number of features. DTs achieve

similar or higher accuracies compared to LR classifiers with lower storage overheads.

While a DT with depth 16 achieves the best accuracy, there is a significant impact on

the storage overhead, which influences the latency and energy consumption of the

classifier. In comparison, DTs with depth 2 and 4 have negligible storage overheads

with competitive accuracies (>85%). Hence, we adopt the DT with depth 2.

68

Feature Space Exploration: We collect 62 performance counters in our training.

A systematic feature space exploration is performed using feature selection and

importance methods. Growing the list from a single feature (input data rate) to two

features with the addition of the earliest availability time of the Arm big cluster increases

the accuracy from 63.66% to 85.48%. The data rate is tracked at runtime by an 8-

entry×16-bit shift register. Therefore, we utilize only two most important features

for a DT of depth 2 for the DAS classifier; this takes 13 ns on Arm Cortex-A53 cores

at 1.2 GHz.

7.2.3 Performance and Scheduling Overhead Analysis

This section compares the DAS framework with LUT (fast), ETF (slow), and ETF-

ideal schedulers. ETF-ideal is a version of the ETF scheduler which ignores the

scheduling overhead. It helps us establish the theoretical limit of achievable exe-

cution time and EDP. Out of the 40 workloads described in Section 7.1.2, we choose

three representative workloads for a detailed analysis of execution time and EDP.

These workloads present different data rates. Workload-1 [Fig. 7.2(a) and (d)],

Table 7.2: Classification accuracies and storage overhead of DAS models with
different machine learning classifiers and features

Classifier Tree Depth Number of
Features

Classification
Accuracy (%)

Storage
(KB)

LR - 2 79.23 0.01
LR - 62 83.1 0.24
DT 2 1 63.66 0.01
DT 2 2 85.48 0.01
DT 4 6 85.51 0.03
DT 16 62 91.65 256

69

workload-2 [Fig. 7.2(b) and (e)] and workload-3 [Fig. 7.2(c) and (f)] represent

low, moderate, and high data rate, respectively.

Fig. 7.2(a)–(c) [Fig. 7.2(d)–(f)] compare the execution times (EDP) of DAS,

LUT, ETF, and ETF-ideal. For workloads 1 and 2, the SoC is not congested at low

data rates. Hence, DAS performs similar to LUT. As data rates increase, DAS aptly

chooses between LUT and ETF at runtime. Its execution time and EDP is 14%

and 15% lower than LUT, and 15% and 42% lower than ETF. For workload-3, the

execution time and EDP of ETF are significantly higher than LUT. DAS chooses

LUT for >99% of the decisions and closely follows its trend.

This study is extended to all 40 workloads. At low data rates, DAS achieves

1.29× speedup and 45% lower EDP than ETF, and 1.28× speedup and 37% lower

EDP than LUT, when the complexity increases. In summary, DAS consistently

performs better than both of the underlying schedulers, successfully adapts to the

workloads at runtime, and aptly chooses between LUT and ETF to achieve low

execution time and EDP.

The left axis of Fig. 7.3 plots the decision distribution of DAS. It uses LUT for all

decisions at the lowest data rate and ETF for 95% of decisions at the highest data rate.

At a moderate workload of 1352 Mb/s, DAS still uses LUT for 96% of the decisions.

The right axis of Fig. 7.3 shows the energy overhead of different schedulers. As

DAS uses LUT and ETF based on the system load, its energy overhead varies from

that of LUT to ETF. The average scheduling latency overhead of DAS under heavy

workloads is 65 ns, and the energy overhead is 27.2 nJ.

We also compared DAS against a heuristic that chooses the fast scheduler when

70

the data rate is less than a predetermined threshold and uses the slow scheduler

otherwise. The threshold is chosen judiciously by analyzing the training data

used for DAS. Simulation results show that the heuristic closely follows LUT and

ETF schedulers below and above the threshold, respectively. In contrast, DAS

outperforms both schedulers and achieves 13% lower execution time than the

heuristic.

71

8 conclusions and future directions

The slowdown of Moore’s Law has limited the power and performance gains ob-

tained with the evolution of technology process nodes over the years. Beyond the

conventional approaches to address this challenge, IMC architectures promise to

achieve superior energy efficiency by combining the computation with the com-

munication inside the memory, thus alleviating the data communication and von

Neumann bottleneck. This preliminary report addressed several critical challenges

in IMC design and development to fully exploit their potential for large-scale com-

puting to edge computing. First, we developed a heterogeneous big little chiplet

architecture for IMC machine learning accelerators that optimizes the DNN model

inference with a novel mapping and an NoP configuration. To the best of our knowl-

edge, this is the first heterogeneous chiplet-based IMC architecture that leverages

different IMC compute structures coupled with a heterogeneous NoP. We show

that mapping the early layers to the little chiplet bank and the subsequent layers

to the big chiplet bank achieves up to 2.8× higher IMC utilization and up to 329×

improvement in the energy-delay-area product compared to homogeneous chiplet

IMC architectures. Experimental evaluation of the proposed big-little chiplet-based

RRAM IMC architecture for ResNet-50 on ImageNet shows 18.4× energy-efficiency

improvement compared to SOTA chiplet-based architecture SIMBA. Then, we devel-

oped an energy-efficient on-chip learning framework for personalized home-based

rehabilitation systems. To the best of our knowledge, this is the first on-chip learning

framework that targets rehabilitation systems that demands a personalized solution

72

for patients. The proposed framework significantly improves the mmWave-based

human pose estimation model through real-time on-chip learning without sacri-

ficing user privacy. Experimental evaluations show that the proposed framework

achieves up to a 45.82% decrease in MPJPE and up to 14.0× speedup for training

compared to an edge device.

In summary, this report addressed the following critical gaps in the design and

development of IMCs by making the following contributions:

• A detailed and comprehensive literature review on IMC architectures for

large-scale computing and edge computing,

• Big Little Chiplets, a heterogeneous big little chiplet architecture for IMC

machine learning accelerators [28],

• An energy-efficient on-chip training framework for home-based rehabilitation

systems [29],

• DAS, dynamic adaptive scheduling framework for heterogeneous SoCs [86].

8.0.1 Future Directions

Neural Network Optimization: Machine learning (ML) algorithms exhibit high

communication volume, and the communication can alone contribute to a signifi-

cant portion of total inference latency in IMC-based architectures. Sparse inter-layer

connections can enable energy-efficient DNNs.

73

This report proposes to optimize neural networks using communication-aware

sparse training and latency-aware mapping to alleviate the increasing contribution

of communication to the total execution.

Carbon Footprint Optimization: Computational loads continue to grow expo-

nentially, as evidenced by the growth in AI applications and training demands.

Energy consumption and resource utilization surge led to high carbon footprints.

Carbon footprint is directly proportional to energy consumption given a location

and a source mix of energy. Therefore, there is a need for optimization of carbon

footprint.

This report proposes to optimize the carbon footprint of architecture and the

DNN model by applying layer freezing and quantization. For in-memory computing-

based accelerators, integrating a carbon footprint tracker into an IMC simulator can

enable designers to consider the carbon footprint during the development phase.

74

bibliography

[1] Jason Shao, Yakun Sophia Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. SIMBA: Scaling Deep-Learning Inference with Multi-
Chip-Module-based Architecture. In IEEE/ACM MICRO, 2019.

[2] Gokul Krishnan, Sumit K Mandal, Manvitha Pannala, Chaitali Chakrabarti,
Jae-Sun Seo, Umit Y Ogras, and Yu Cao. SIAM: Chiplet-based Scalable In-
Memory Acceleration with Mesh for Deep Neural Networks. ACM TECS,
2021.

[3] Anirban Shafiee, Ali Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. ISAAC:
A Convolutional Neural Network Accelerator with in-situ Analog Arithmetic
in Crossbars. ACM/IEEE ISCA, 2016.

[4] Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring
Randomly Wired Neural Networks for Image Recognition. In IEEE/CVF ICCV,
2019.

[5] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen,
Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan,
et al. Searching for Mobilenetv3. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1314–1324, 2019.

[6] Xuehai Song, Linghao Qian, Hai Li, and Yiran Chen. Pipelayer: A Pipelined
Reram-based Accelerator for Deep Learning. In IEEE HPCA, pages 541–552,
2017.

[7] Gokul Krishnan, Sumit K Mandal, Chaitali Chakrabarti, Jae sun Seo, Umit Y
Ogras, and Yu Cao. Interconnect-aware Area and Energy Optimization for
In-Memory Acceleration of DNNs. IEEE Design & Test, 37(6):79–87, 2020.

75

[8] Sumit K Mandal, Gokul Krishnan, Chaitali Chakrabarti, Jae-Sun Seo, Yu Cao,
and Umit Y Ogras. A Latency-Optimized Reconfigurable NoC for In-Memory
Acceleration of DNNs. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 10(3):362–375, 2020.

[9] Sumit K Mandal, Gokul Krishnan, A. Alper Goksoy, Gopikrishnan Ravindran
Nair, Yu Cao, and Umit Y Ogras. COIN: Communication-Aware In-Memory
Acceleration for Graph Convolutional Networks. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 2022.

[10] Jingyang Pal, Saptadeep Liu, Irina Alam, Nicholas Cebry, Haris Suhail, Shi
Bu, Subramanian S Iyer, Sudhakar Pamarti, Rakesh Kumar, and Puneet Gupta.
Designing a 2048-Chiplet, 14336-Core Waferscale Processor. In ACM/IEEE
DAC, 2021.

[11] Liangzhen Kwon, Hyoukjun Lai, Michael Pellauer, Tushar Krishna, Yu-Hsin
Chen, and Vikas Chandra. Heterogeneous Dataflow Accelerators for Multi-
DNN Workloads. In IEEE HPCA, 2021.

[12] Hongyu Tan, Zhanhong Cai, Runpei Dong, and Kaisheng Ma. NN-Baton:
DNN Workload Orchestration and Chiplet Granularity Exploration for Multi-
chip Accelerators. In ACM/IEEE ISCA, 2021.

[13] Mengdi Wang, Ying Wang, Cheng Liu, and Lei Zhang. Network-on-
Interposer Design for Agile Neural-Network Processor Chip Customization.
In ACM/IEEE DAC, 2021.

[14] Gauthaman Kim, Jinwoo Murali, Heechun Park, Eric Qin, Hyoukjun Kwon,
Venkata Chaitanya Krishna Chekuri, Nael Mizanur Rahman, Nihar Dasari,
Arvind Singh, Minah Lee, et al. Architecture, Chip, and Package Codesign
Flow for Interposer-Based 2.5D Chiplet Integration Enabling Heterogeneous
IP Reuse. IEEE TVLSI, 2020.

[15] Eric Vivet, Pascal Guthmuller, Yvain Thonnart, Gael Pillonnet, César Fuguet,
Ivan Miro-Panades, Guillaume Moritz, Jean Durupt, Christian Bernard, Didier

76

Varreau, et al. IntAct: A 96-core Processor with Six Chiplets 3D-stacked on
an Active Interposer with Distributed Interconnects and Integrated Power
Management. IEEE JSSC, 2020.

[16] Hao Zheng, Ke Wang, and Ahmed Louri. A Versatile and Flexible Chiplet-
based System Design for Heterogeneous Manycore Architectures. In
ACM/IEEE DAC, 2020.

[17] Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Centaur:
A Chiplet-based, Hybrid Sparse-Dense Accelerator for Personalized Recom-
mendations. In 2020 ACM/IEEE 47th Annual ISCA, pages 968–981. IEEE,
2020.

[18] Yuan Li, Ahmed Louri, and Avinash Karanth. Scaling deep-learning inference
with chiplet-based architecture and photonic interconnects. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 931–936. IEEE, 2021.

[19] Yuan Li, Ahmed Louri, and Avinash Karanth. Spacx: Silicon photonics-based
scalable chiplet accelerator for dnn inference. In Proc. IEEE Int. Symp. High-
Perform. Comput. Archit., pages 1–13, 2022.

[20] Yuan Li, Ke Wang, Hao Zheng, Ahmed Louri, and Avinash Karanth. Ascend:
A scalable and energy-efficient deep neural network accelerator with photonic
interconnects. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.

[21] John W Turner, Walker J Poulton, John M Wilson, Xi Chen, Stephen G Tell,
Matthew Fojtik, Thomas H Greer, Brian Zimmer, Sanquan Song, Nikola Ne-
dovic, et al. Ground-Referenced Signaling for Intra-Chip and Short-Reach
Chip-to-Chip Interconnects. In IEEE CICC, 2018.

[22] Robert Mahajan, Ravi Sankman, Neha Patel, Dae-Woo Kim, Kemal Aygun,
Zhiguo Qian, Yidnekachew Mekonnen, Islam Salama, Sujit Sharan, Deepti
Iyengar, et al. Embedded Multi-Die Interconnect Bridge (EMIB)–A High
Density, High Bandwidth Packaging Interconnect. In IEEE ECTC, 2016.

77

[23] Min SH Aung et al. The automatic detection of chronic pain-related expression:
requirements, challenges and the multimodal emopain dataset. IEEE Trans.
on Affective Computing, 7(4):435–451, 2015.

[24] Aleksandar Vakanski et al. A data set of human body movements for physical
rehabilitation exercises. Data, 3(1):2, 2018.

[25] Sizhe An and Umit Y Ogras. Mars: mmwave-based assistive rehabilitation
system for smart healthcare. ACM Trans. on Embedded Computing Syst., 20:1–22,
2021.

[26] Sizhe An, Yin Li, and Umit Ogras. mRI: Multi-modal 3d human pose estima-
tion dataset using mmwave, RGB-d, and inertial sensors. In Proc. of NeurIPS
Datasets and Benchmarks Track, 2022.

[27] Puck ME Schuivens et al. Impact of the covid-19 lockdown strategy on vascular
surgery practice: more major amputations than usual. Annals of Vascular
Surgery, 69:74–79, 2020.

[28] Gokul Krishnan, A. Alper Goksoy, Sumit K Mandal, Zhenyu Wang, Chaitali
Chakrabarti, Jae-sun Seo, Umit Y Ogras, and Yu Cao. Big-little chiplets for
in-memory acceleration of dnns: A scalable heterogeneous architecture. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
Design, pages 1–9, 2022.

[29] A. Alper Goksoy, Sizhe An, and Umit Y Ogras. Energy-efficient on-chip
training for customized home-based rehabilitation systems. In Proceedings of
the 60th IEEE/ACM Design Automation Conference, 2023.

[30] Nvidia. Jetson Xavier NX Developer Kit. https://www.nvidia.com/en-us/
autonomous-machines/embedded-Syst./jetson-xavier-nx/, 2014. [Online;
accessed 29 Sep. 2022].

https://www.nvidia.com/en-us/autonomous-machines/embedded-Syst./jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-Syst./jetson-xavier-nx/

78

[31] Leila Ma, Yenai Delshadtehrani, Cansu Demirkiran, José L Abellán, and Aiav
Joshi. TAP-2.5 D: A Thermally-Aware Chiplet Placement Methodology for 2.5
D Systems. In IEEE DATE, 2021.

[32] Uneeb Rathore, Sumeet Singh Nagi, Subramanian Iyer, and Dejan Marković.
A 16nm 785gmacs/j 784-core digital signal processor array with a multilayer
switch box interconnect, assembled as a 2× 2 dielet with 10µm-pitch inter-
dielet i/o for runtime multi-program reconfiguration. In 2022 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC), volume 65, pages 52–54. IEEE,
2022.

[33] Jieming Bharadwaj, Srikant Yin, Bradford Beckmann, and Tushar Krishna.
Kite: A Family of Heterogeneous Interposer Topologies Enabled via Accurate
Interconnect Modeling. In ACM/IEEE DAC, 2020.

[34] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person
2d pose estimation using part affinity fields. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pages 7291–7299, 2017.

[35] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution
representation learning for human pose estimation. In Proc. IEEE/CVF Conf.
on Computer Vision and Pattern Recognition, pages 5693–5703, 2019.

[36] Arindam Sengupta, Feng Jin, Renyuan Zhang, and Siyang Cao. mm-pose:
Real-time human skeletal posture estimation using mmwave radars and cnns.
IEEE Sensors Journal, 20(17):10032–10044, 2020.

[37] Hongfei Xue et al. mmmesh: Towards 3d real-time dynamic human mesh
construction using millimeter-wave. In Proc. 19th Int. Conf. on Mobile Syst.,
Applications, and Services, pages 269–282, 2021.

[38] Shinhyun Choi et al. Sige epitaxial memory for neuromorphic computing
with reproducible high performance based on engineered dislocations. Nature
Materials, 17(4):335–340, 2018.

79

[39] Alessandro Grossi et al. Resistive ram endurance: Array-level characterization
and correction techniques targeting deep learning applications. IEEE Trans.
on Electron Devices, 66(3):1281–1288, 2019.

[40] Biresh Kumar Joardar et al. Learning to train cnns on faulty reram-based
manycore accelerators. ACM Trans. on Embedded Computing Syst., 20(5s):1–23,
2021.

[41] Xiaochen Peng et al. Dnn+ neurosim v2. 0: An end-to-end benchmarking
framework for compute-in-memory accelerators for on-chip training. IEEE
TCAD, 40(11):2306–2319, 2020.

[42] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans.
on Parallel and Distrib. Syst., 13(3):260–274, 2002.

[43] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira. DAG
Scheduling Using a Lookahead Variant of the Heterogeneous Earliest Finish
Time Algorithm. In IEEE Euromicro Conf. on Parallel, Distrib. and Network-based
Process., pages 27–34, 2010.

[44] Chandandeep Singh Pabla. Completely Fair Scheduler. Linux Journal, (184),
2009.

[45] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple Linux Utility
for Resource Management. In Workshop on Job Scheduling Strategies for Parallel
Processing, pages 44–60. Springer, 2003.

[46] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing
in practice: the Condor experience. Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[47] Kallia Chronaki et al. Task Scheduling Techniques for Asymmetric Multi-core
Systems. IEEE Trans. on Parallel and Distrib. Systems, 28(7):2074–2087, 2016.

80

[48] Junyan Zhou. Real-time Task Scheduling and Network Device Security for
Complex Embedded Systems based on Deep Learning Networks. Microproces-
sors and Microsystems, 79:103282, 2020.

[49] Alireza Namazi, Saeed Safari, and Siamak Mohammadi. CMV: Clustered
Majority Voting Reliability-aware Task Scheduling for Multicore Real-time
Systems. IEEE Trans. on Reliability, 68(1):187–200, 2018.

[50] Anish Krishnakumar et al. Runtime Task Scheduling using Imitation Learning
for Heterogeneous Many-core Systems. IEEE Trans. on CAD of Integr. Circuits
and Syst., 39(11):4064–4077, 2020.

[51] Ravindra Jejurikar and Rajesh Gupta. Energy-aware Task Scheduling with
Task Synchronization for Embedded Real-time Systems. IEEE Trans. on CAD
of Integr. Circuits and Syst., 25(6):1024–1037, 2006.

[52] Poopak Azad and Nima Jafari Navimipour. An Energy-aware Task Scheduling
in the Cloud Computing using a Hybrid Cultural and Ant Colony Optimiza-
tion Algorithm. Int. Journal of Cloud Applications and Computing, 7(4):20–40,
2017.

[53] Achim Streit. A Self-tuning Job Scheduler Family with Dynamic Policy Switch-
ing. In Workshop on Job Scheduling Strategies for Parallel Process., pages 1–23.
Springer, 2002.

[54] Mohammad I Daoud and Nawwaf Kharma. A Hybrid Heuristic–genetic
Algorithm for Task Scheduling in Heterogeneous Processor Networks. Journal
of Parallel and Distrib. Computing, 71(11):1518–1531, 2011.

[55] Cristina Boeres, Alexandre Lima, and Vinod EF Rebello. Hybrid Task Schedul-
ing: Integrating Static and Dynamic Heuristics. In Proc. of 15th Symp. on
Computer Arch. and High Perform. Computing, pages 199–206, 2003.

[56] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop op-
eration and dataflow in fpga acceleration of deep convolutional neural net-

81

works. In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’17, pages 45–54, New York, NY, USA,
2017. ACM.

[57] Trevor Mudge. Power: A First-class Architectural Design Constraint. Computer,
34(4):52–58, 2001.

[58] MICRON. Datasheet for DDR4 Model. https://www.micron.com/-/media/
client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_
dram_2e0d.pdf Accessed 29 Mar. 2021, 2014.

[59] Saransh Imani, Mohsen Gupta, Yeseong Kim, and Tajana Rosing. FloatPIM: In-
memory Acceleration of Deep Neural Network Training with High Precision.
In ACM/IEEE ISCA, 2019.

[60] David Greenhill et al. 3.3 A 14nm 1GHz FPGA with 2.5 D Transceiver Integra-
tion. In 2017 IEEE ISSCC. IEEE, 2017.

[61] William J Poulton, John W Dally, Xi Chen, John G Eyles, Thomas H Greer,
Stephen G Tell, and C Thomas Gray. A 0.54 pJ/b 20Gb/s Ground-Referenced
Single-Ended Short-Haul Serial Link in 28nm CMOS for Advanced Packaging
Applications. In IEEE International Solid-State Circuits Conference Digest of
Technical Papers, 2013.

[62] Michael Su, Bryan Black, Yu-Hsiang Hsiao, Chien-Lin Changchien, Chang-Chi
Lee, and Hung-Jen Chang. 2.5 d ic micro-bump materials characterization and
imcs evolution under reliability stress conditions. In 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC), pages 322–328. IEEE, 2016.

[63] Chester Liu, Jacob Botimer, and Zhengya Zhang. A 256gb/s/mm-shoreline
aib-compatible 16nm finfet cmos chiplet for 2.5 d integration with stratix 10
fpga on emib and tiling on silicon interposer. In 2021 IEEE Custom Integrated
Circuits Conference (CICC), pages 1–2. IEEE, 2021.

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/4gb_ddr4_dram_2e0d.pdf

82

[64] Saurabh Sinha, Greg Yeric, Vikas Chandra, Brian Cline, and Yu Cao. Exploring
Sub-20nm FinFET Design with Predictive Technology Models. In DAC 2012,
pages 283–288. IEEE, 2012.

[65] CHIPS Alliance (INTEL). EMIB PHY RTL. https://github.com/
chipsalliance/aib-phy-hardware, 2021. [Online; Accessed 20-April-2022].

[66] Texas Instruments. Datasheet. https://www.ti.com/lit/ds/symlink/
iwr1443.pdf, 2014. [Online; accessed 8 Apr. 2022].

[67] Microsoft. Kinect sensor. https://developer.microsoft.com/en-us/
windows/kinect/, 2014. [Online; accessed 29 Aug. 2022].

[68] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Hu-
man3. 6m: Large scale datasets and predictive methods for 3d human sensing
in natural environments. IEEE Trans. on Pattern Analysis and Machine Intelligence,
36(7):1325–1339, 2013.

[69] Chinthaka Gamanayake, Lahiru Jayasinghe, Benny Kai Kiat Ng, and Chau
Yuen. Cluster Pruning: An Efficient Filter Pruning Method for Edge AI Vision
Applications. IEEE Journal of Selected Topics in Signal Processing, 14(4):802–816,
2020.

[70] Valentin Radu, Kuba Kaszyk, Yuan Wen, Jack Turner, José Cano, Elliot J
Crowley, Björn Franke, Amos Storkey, and Michael O’Boyle. Performance
Aware Convolutional Neural Network Channel Pruning for Embedded GPUs.
In 2019 IEEE International Symposium on Workload Characterization (IISWC),
pages 24–34, 2019.

[71] Siling Yang, Weijian Chen, Xuechen Zhang, Shuibing He, Yanlong Yin, and
Xian-He Sun. Auto-prune: Automated DNN Pruning and Mapping for
ReRAM-based Accelerator. In Proceedings of the ACM International Conference
on Supercomputing, pages 304–315, 2021.

https://github.com/chipsalliance/aib-phy-hardware
https://github.com/chipsalliance/aib-phy-hardware
https://www.ti.com/lit/ds/symlink/iwr1443.pdf
https://www.ti.com/lit/ds/symlink/iwr1443.pdf
https://developer.microsoft.com/en-us/windows/kinect/
https://developer.microsoft.com/en-us/windows/kinect/

83

[72] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen,
Madeleine Gibescu, and Antonio Liotta. Scalable Training of Artificial Neural
Networks with Adaptive Sparse Connectivity Inspired by Network Science.
Nature communications, 9(1):1–12, 2018.

[73] Nan Wu, Lei Deng, Guoqi Li, and Yuan Xie. Core placement optimization
for multi-chip many-core neural network systems with reinforcement learn-
ing. ACM Transactions on Design Automation of Electronic Systems (TODAES),
26(2):1–27, 2020.

[74] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International Conference on Learning
Representations (ICLR), 2018.

[75] Kadan Lottick, Silvia Susai, Sorelle A Friedler, and Jonathan P Wilson. Energy
usage reports: Environmental awareness as part of algorithmic accountability.
Workshop on Tackling Climate Change with Machine Learning at NeurIPS 2019,
2019.

[76] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres.
Quantifying the carbon emissions of machine learning. Workshop on Tackling
Climate Change with Machine Learning at NeurIPS 2019, 2019.

[77] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Car-
bontracker: Tracking and predicting the carbon footprint of training deep
learning models. ICML Workshop on Challenges in Deploying and monitoring
Machine Learning Systems, July 2020. arXiv:2007.03051.

[78] Loïc Lannelongue, Jason Grealey, and Michael Inouye. Green algo-
rithms: quantifying the carbon footprint of computation. Advanced science,
8(12):2100707, 2021.

[79] Victor Schmidt, Kamal Goyal, Aditya Joshi, Boris Feld, Liam Conell, Nikolas
Laskaris, Doug Blank, Jonathan Wilson, Sorelle Friedler, and Sasha Luccioni.

84

Codecarbon: estimate and track carbon emissions from machine learning
computing (2021). DOI: https://doi. org/10.5281/zenodo, 4658424, 2021.

[80] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky,
and Joelle Pineau. Towards the systematic reporting of the energy and car-
bon footprints of machine learning. The Journal of Machine Learning Research,
21(1):10039–10081, 2020.

[81] SA Budennyy, VD Lazarev, NN Zakharenko, AN Korovin, OA Plosskaya,
DV Dimitrov, VS Akhripkin, IV Pavlov, IV Oseledets, IS Barsola, et al. Eco2ai:
carbon emissions tracking of machine learning models as the first step towards
sustainable ai. In Doklady Mathematics, pages 1–11. Springer, 2023.

[82] Ji Lin, Ligeng Zhu, Wei-ming Chen, Wei-chen Wang, Chuang Gan, and Song
Han. On-device training under 256kb memory. In Annual Conference on Neural
Information Processing Systems, 2022.

[83] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha
Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi Huang, Charles
Bai, et al. Sustainable ai: Environmental implications, challenges and oppor-
tunities. Proceedings of Machine Learning and Systems, 4:795–813, 2022.

[84] Samet Egemen Arda et al. DS3: A System-Level Domain-Specific System-
on-Chip Simulation Framework. IEEE Trans. on Computers, 69(8):1248–1262,
2020.

[85] Joshua Mack, Nirmal Kumbhare, Anish NK, Umit Y Ogras, and Ali Akoglu.
User-Space Emulation Framework for Domain-Specific SoC Design. In 2020
IEEE Int. Parallel and Distrib. Process. Symp. Workshops), pages 44–53, 2020.

[86] A Alper Goksoy, Anish Krishnakumar, Md Sahil Hassan, Allen J Farcas, Ali
Akoglu, Radu Marculescu, and Umit Y Ogras. Das: Dynamic adaptive schedul-
ing for energy-efficient heterogeneous socs. IEEE Embedded Systems Letters,
14(1):51–54, 2021.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Literature Review
	Chiplet-based Architectures
	Home-based Rehabilitation Systems
	Task Scheduling Techniques for Heterogeneous Architectures

	Big-Little Chiplets for In-Memory Acceleration of DNNs: A Scalable Heterogeneous Architecture
	Overall Architecture
	Parameters of the Big-Little Architecture and Mapping
	Experimental Evaluation

	Energy-Efficient On-Chip Training for Customized Home-based Rehabilitation Systems
	Home-Based Rehabilitation System
	Experimental Results

	Proposed Work – 1: Communication-Aware Sparse Neural Network Optimization
	Proposed Work – 2: Carbon Footprint Optimization
	Other Work: DAS: Dynamic Adaptive Scheduling for Energy-Efficient Heterogeneous SoCs
	Dynamic Adaptive Scheduling Framework
	Experimental Evaluations

	Conclusions and Future Directions
	Bibliography

