In-Memory Computing based Acceleration: Large-Scale to Edge Computing

By

Ahmet Alper Goksoy

A preliminary report for the degree of

Doctor of Philosophy

(Department of Electrical and Computer Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

2023

Preliminary Examination Date: 06/01/2023

Preliminary Exam Committee:

Umit Y. Ogras, Associate Professor, Electrical and Computer Engineering, University of Wisconsin-Madison

Yu Hen Hu, Professor, Electrical and Computer Engineering, University of Wisconsin-Madison

Younghyun Kim, Assistant Professor, Computer Sciences, University of Wisconsin-Madison

Chaitali Chakrabarti, Professor, Electrical, Computer and Energy Engineering, Arizona State University
Dedicated to my son, my parents Ayşe Gülnihal and Ismail Hakka, my brother Osman Gökalp, and my wife Betül.
CONTENTS

Contents ii

List of Tables iv

List of Figures v

Abstract viii

1 Introduction 1

2 Literature Review 10
 2.1 Chiplet-based Architectures 10
 2.2 Home-based Rehabilitation Systems 12
 2.3 Task Scheduling Techniques for Heterogeneous Architectures 14

3 Big-Little Chiplets for In-Memory Acceleration of DNNs: A Scalable Heterogeneous Architecture 17
 3.1 Overall Architecture 17
 3.2 Parameters of the Big-Little Architecture and Mapping 20
 3.3 Experimental Evaluation 26

4 Energy-Efficient On-Chip Training for Customized Home-based Rehabilitation Systems 38
 4.1 Home-Based Rehabilitation System 38
 4.2 Experimental Results 43

5 Proposed Work – 1: Communication-Aware Sparse Neural Network Optimization 52

6 Proposed Work – 2: Carbon Footprint Optimization 56
Other Work: DAS: Dynamic Adaptive Scheduling for Energy-Efficient Heterogeneous SoCs 60
 7.1 Dynamic Adaptive Scheduling Framework 60
 7.2 Experimental Evaluations 65

Conclusions and Future Directions 71

Bibliography 74
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Set of configurations considered to determine big-little chiplet and NoP structure.</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Performance comparison of each component of a homogeneous (Little only, Big only) chiplet architecture and the heterogeneous Big-Little IMC chiplet architecture for VGG-19 on CIFAR-100.</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Performance comparison of a homogeneous (Little only, Big only) chiplet architecture and the heterogeneous Big-Little IMC chiplet architecture for different DNNs.</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Ratio between DRAM energy and compute energy for VGG-16 and VGG-19 with systems having different number of chiplets (All weights of VGG-19 fit on chip with this configuration, significantly reducing the DRAM energy).</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison with other platforms for ResNet-50 on ImageNet (*reported in [1]).</td>
<td>34</td>
</tr>
<tr>
<td>4.1</td>
<td>Random set configurations for experimental evaluations and training results of the baseline mmWave-CNN model.</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Hardware results for mmWave-CNN model inference and training on Jetson Xavier NX with 2 configurations and our framework with 2 configurations and the speedup comparisons. 128 × 128 and 256 × 256 represent the crossbar array sizes. (P: PHR, J: Jetson)</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Hardware results for RGB-CNN inference on Jetson Xavier NX with 6 CPU cores and our framework with 256 × 256 crossbars.</td>
<td>50</td>
</tr>
<tr>
<td>7.1</td>
<td>Type of performance counters used by DAS framework.</td>
<td>60</td>
</tr>
<tr>
<td>7.2</td>
<td>Classification accuracies and storage overhead of DAS models with different machine learning classifiers and features.</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Normalized layer-wise activation/weight distribution for (a) ResNet-50 (ImageNet) and (b) VGG-19 (CIFAR-100). Initial/latter layers are activation/weight dominated. ... 2

1.2 IMC utilization for different DNNs using a homogeneous chiplet RRAM IMC architecture [2] and the proposed heterogeneous big-little chiplet architecture. The heterogeneous big-little architecture improves the IMC utilization. ... 4

2.1 Cross-sectional view of the big-little chiplet-based IMC architecture. The architecture consists of a little chiplet bank with little chiplets (connected by an NoP within the interposer and a big chiplet bank with big chiplets connected by a bridge NoP. NoP properties: 1.5–8mm length, 2–4.5 µm pitch, and 0.5–2 µm width. ... 11

3.1 (a) Overview of the big-little chiplet IMC architecture. The little chiplet bank utilizes smaller chiplets connected by a interposer-based NoP while the big chiplet bank utilizes bigger chiplets connected by a bridge-based NoP. Each chiplet utilizes a local DRAM, (b) IMC chiplet architecture (big and little). Each chiplet consists of an array of IMC tiles and a dedicated NoP transceiver and router, (c) The little chiplet bank consists of fewer and smaller tiles while the big chiplet bank consists of more bigger tiles. Both chiplet structures utilize a mesh-based NoC for on-chip communication, and (d) Structure of each tile within the big and little chiplet. It consists of an array of IMC crossbar arrays and associated peripheral circuits with an interconnect similar to that in [3]. The little chiplet consists of fewer and smaller IMC crossbars while the big chiplet has larger and more IMC crossbar arrays. .. 18
3.2 IMC utilizations for different DNNs across different big-little chiplet-based RRAM IMC configurations for (a) ResNet-110, (b) ResNet-34, (c) VGG-19, (d) DenseNet-40. Based on the utilization, we choose crossbar size of big chiplet as 256×256 and crossbar size of little chiplet as 64×64 (256–64). ... 28

3.3 Normalized NoP EDP for different bus-widths for VGG-19 and ResNet-34. The NoP with bus width of 24 for big and 32 for little chiplets (24–32) shows lowest EDP. ... 30

3.4 EDAP comparison (log-scale) of the big-little chiplet-based RRAM IMC architecture to ‘Little only’ and ‘Big only’ chiplet-based RRAM IMC architectures. The big-little architecture achieves up to 329× improvement compared to ‘Little only’ architecture. ... 33

4.1 Illustration of the target rehabilitation system. The RGB camera is used only during training to generate the reference joint coordinates when the initial model is customized to the target user. Once the model that uses mmWave signals is trained, only the mmWave radar is used for inference. 39

4.2 The architecture of IMC-based hardware accelerator. Feedforward, error calculation, and weight update stages are performed in the accelerator tiles whereas the weight gradient calculation is executed in the weight gradient block. Tiles are connected via NoC. (R: NoC Router) 42

4.3 MPJPE and PA-MPJPE comparisons for all three random sets. Results show MPJPE and PA MPJPE before customization using 10 subjects for training and after customization which is customized for each test subject separately. Parts (a), (b), and (c) represent Set-1, Set-2, and Set-3 results, respectively. As they are randomly split, each plot shows the results for different subjects. ... 46

4.4 PA-MPJPE comparisons for the baseline model (Baseline), a customized model with nonlinear properties (Nonlinear), and a customized model without nonlinear properties (Ideal) for 10 test subjects from Set-2. 50
5.1 Percentage contribution to inference latency for various networks on two datasets. The communication latency can take up to 43% of the total inference latency.

5.2 Overview of the proposed approach. It consists of mapping the target DNN onto the target architecture using latency-aware mapping and hardware-aware dynamic sparse training. The training process first replaces the DNN layers with sparse graphs; then, at the end of each epoch, employs hardware-aware pruning and link addition. Each circle in the target DNN represents the feature map of DNNs; each link in the target DNN represents the weights of DNNs. The weights are mapped onto the in-memory computing (IMC) tiles with the same color as the corresponding links. The circles and the rectangles in the target architecture denote the NoC routers and IMC tiles, respectively.

6.1 Overview of the proposed framework. Inputs to the framework are the target network, target architecture, dataset, and location. First, the training or inference part is performed in the Python wrapper using the PyTorch library. This wrapper outputs the accuracy based on the quantization. Then, quantized weights, activations, and gradients are sent to the IMC simulator. This simulator outputs latency and TOPS. Then, energy consumption and location information are used by the carbon footprint tracker for each epoch, outputting the carbon footprint.

7.1 Flowchart describing the flow of the DAS framework: Oracle generation, feature selection, and training a model for the classifier.

7.2 Comparison of (a)–(c) average execution time and (d)–(f) EDP between DAS, LUT, ETF, and ETF-ideal for three different workloads.

7.3 Decisions taken by the DAS framework as bar plots and total scheduling energy overheads of LUT, ETF, and DAS as line plots.
In-memory computing (IMC) based architectures enable energy-efficient inference and training of machine learning (ML) algorithms. As DNN complexity increases, the need for larger architectures is inevitable. Monolithic IMC architectures face yield and fabrication cost challenges because of significant area overhead. Hence, 2.5D/3D architectures are proposed for large-scale DNN accelerators using small chips (chiplets). Therefore, there is a critical need for research on designing optimized architectures for chiplets. In addition, there is an increasing demand to implement neural networks on mobile edge devices for both on-chip training and inference following recent developments in Internet of Things (IoT). Nonetheless, due to the significant computational resources required for training, deploying neural networks on edge devices with limited resources poses a challenge. The energy efficiency of IMC accelerators enables system designers to consider this architecture for edge devices. Therefore, on-chip training and inference using IMC architectures can enable energy-efficient edge computing. We perform research in the following areas to address these problems: (i) Big Little Chiplets: We develop a heterogeneous big-little chiplet-based IMC architecture that utilizes big and little IMC-based chiplets coupled with an optimal NoP configuration, (ii) On-Chip Training: We develop a ReRAM-based in-memory computing accelerator for on-chip training and inference of millimeter Wave (mmWave) CNN and inference of RGB CNN models for personalized home-based rehabilitation systems.
1 INTRODUCTION

State-of-the-art deep neural networks (DNNs) have become more complex with deeper, wider, and more branched structures to cater to demanding applications [4, 5]. The growing complexity reduces hardware inference performance due to increased memory accesses and computations [4]. To boost the performance and energy efficiency, in-memory computing (IMC)-based architectures embed the matrix-vector-multiplications within the memory arrays [3, 6, 7, 8, 9]. However, IMC architectures with stationary weights stored on the chip result in significant area overhead and fabrication cost [2, 3]. Hence, 2.5D/3D architectures are adopted to design large-scale DNN accelerators using an array of small chips (i.e. chiplets) connected by a network-on-package (NoP) [10, 11].

Prior studies have demonstrated chiplet-based architectures based on both IMC and conventional multiply-and-accumulate (MAC) engines for DNN acceleration [2, 12, 1, 10, 13, 11, 14, 15, 16, 17, 18, 19, 20]. However, existing schemes do not consider the non-uniform distribution of weights and activations within DNNs while designing the chiplet-based architecture. Figure 1.1(a) and Figure 1.1(b) show the distribution of activations and weights (normalized) across all layers of ResNet-50 on ImageNet and VGG-19 on CIFAR-100. The initial layers have more activations between layers but have fewer weights. A larger number of activations lead to more on-chip data movement, while fewer weights imply reduced computations. In contrast, the latter layers have more weights and fewer activations, resulting in increased computations and reduced data movement. Hence, the chiplet-based IMC architectures should be optimized to match the non-uniform algorithm struc-
Figure 1.1: Normalized layer-wise activation/weight distribution for (a) ResNet-50 (ImageNet) and (b) VGG-19 (CIFAR-100). Initial/latter layers are activation/weight dominated.

ture and maximize the efficiency of computation and data movement across the DNN layers.

Figure 1.2(a) shows the IMC utilization of four different DNNs using a homogeneous chiplet-based RRAM IMC architecture. The architecture utilizes chiplets with 16 tiles, where each tile consists of an array of 16 IMC crossbar arrays of size 256×256 [2]. The chiplets are interconnected by a 32-bit wide NoP operating at 250MHz, having the signaling scheme in [21]. Smaller DNNs like DenseNet-40 on CIFAR-10 have 29% IMC utilization, while larger DNNs like VGG-19 on CIFAR-100 achieve 40% IMC utilization. A lower IMC utilization leads to increased IMC array arrays and in turn, higher energy and latency. Furthermore, a single NoP structure
results in significant area overhead due to the large NoP driver and interconnect cost. Figure 1.2(b) shows that for the homogeneous structure, the NoP accounts for 90% and 50% of the total area for VGG-19 on CIFAR-100 and DenseNet-40 on CIFAR-10, respectively. In addition, the increased NoP bus width leads to higher NoP energy with up to 53.75× higher cost relative to an 8-bit multiply-and-accumulate (MAC) operation in 16nm technology node [12].

Optimizing the architecture and the NoP will lead to efficient execution of DNN models. Therefore, this work addresses the inefficiency of homogeneous chiplet-based IMC architectures that fail to exploit the underlying distribution of weights and activations within DNNs. To this end, we propose a heterogeneous chiplet-based IMC architecture that integrates big and little-chiplet banks, as illustrated in Figure 2.1. Specifically, we develop an algorithm to determine the optimal configuration of the big-little IMC chiplet architecture. The little-chiplet bank consists of little chiplets interconnected by an interposer-based NoP (chiplets are placed closed to each other) [21]. Similarly, the big-chiplet bank consists of big chiplets interconnected by a bridge-based NoP [22]. Little chiplets consist of fewer/smaller IMC crossbars or processing element (PE) arrays, while the big chiplets have more/larger IMC crossbars or PE arrays. In addition, each chiplet (big/little) utilizes a local DRAM to store the weights of the DNN.

In addition to the hardware architecture, we also propose a new technique to map DNNs onto the big-little chiplet-based IMC architecture. Taking a cue from the non-uniform distribution of the weights and activations within the DNN, we propose to map the early layers within a DNN onto the little chiplet bank and the
Figure 1.2: IMC utilization for different DNNs using a homogeneous chiplet RRAM IMC architecture [2] and the proposed heterogeneous big-little chiplet architecture. The heterogeneous big-little architecture improves the IMC utilization.

subsequent layers onto the big chiplet bank. The smaller structure of the weights in the early layers results in higher utilization within the little chiplet bank, while the larger layers towards the end of the DNN achieve high utilization on the big-chiplet bank. To achieve this, we develop a custom mapping algorithm that performs the mapping of the DNN on to the big-little architecture. We note that, the algorithm is universal and applies to the case when the resource in a given big-little chiplet is not enough to store all DNN weights.

We exploit the activation distribution by utilizing an interposer-based NoP with high bandwidth within the little chiplet bank, which houses the early layers with higher on-chip data movement. Simultaneously, the subsequent layers with lower on-chip data movement (fewer activations) utilize the bridge-based NoP with lower bandwidth within the big chiplet bank. Experimental evaluation of
the proposed big-little chiplet-based RRAM IMC architecture on ResNet-50 on ImageNet shows up to 259×, 139×, and 48× improvement in energy-efficiency with lower area compared to Nvidia V100 GPU, Nvidia T4 GPU, and SIMBA [1] architecture, respectively.

In addition, there is an increasing demand to implement neural networks on mobile edge devices for both on-chip training and inference following recent developments in the internet of things (IoT). Nonetheless, due to the significant computational resources required for training, deploying neural networks on edge devices with limited resources poses a challenge. One such case is home-based rehabilitation systems. Home-based rehabilitation using video cameras and wearable sensors has attracted significant attention due to its potential to help millions of people [23, 24, 25, 26]. For example, a recent study shows more than a two-fold increase in the number of amputations during the COVID-19 pandemic [27]. Remote monitoring and rehabilitation can complement infrequent and prolonged in-person visits to enable early diagnosis and intervention.

Prevalent use of home-based rehabilitation systems requires addressing three critical challenges. First, these systems must be sufficiently accurate to detect abnormal behavior and produce actionable data for health professionals. This requirement leads to the second challenge: sophisticated algorithms, such as machine learning (ML) and artificial intelligence (AI) techniques. Offloading these algorithms to the cloud is not a desirable solution since sending raw sensor data incurs high communication energy and latency while threatening user privacy. Hence, the third challenge is accomplishing home-based rehabilitation by running algorithms
locally, at the edge.

Recent techniques enable home-based rehabilitation using RGB cameras [23, 24], wearable inertial measurement units (IMU) [26], and millimeter-wave (mmWave) radar sensors [25]. These techniques collect sensor data as the patients perform rehabilitation movements. Then, they process the sensor data, typically using a convolutional neural network (CNN), to produce human joint coordinates. While these approaches show strong potential, they have one fundamental shortcoming. All prior techniques train their inference models with the user data available at design time. Then, they assume that future users, whose number is likely to be much larger than the training set, will use the produced model for inference. Even if the CNNs inference models generalize to arbitrary users, there is no guarantee that their accuracy will remain accurate. Hence, this limitation jeopardizes the first requirement: high accuracy in estimating the joint coordinates. As a result, there is a strong need for approaches that customize the deep learning models to specific users through on-device training in the home environment.

RGB cameras are the most common sources since they offer true-color real-world information. However, *always-on cameras at home* can raise serious privacy concerns such as facial information leakage. In contrast, mmWave radar, an emerging wireless sensing device, can accurately measure objects’ moving trends while retaining privacy. In this work, we focus on systems that use mmWave radar inputs since they also have significantly lower processing requirements than RGB camera inputs and do not require users to wear any special sensors. We assume that an inference model, such as CNN, is trained offline to convert mmWave signals to human joint
positions. Then, it is acquired by a new patient for home-based rehabilitation. Since the accuracy of this model is limited by the offline data, the proposed system aims to customize the initial model to the new user, as illustrated in Fig. 4.1. The camera is activated only during this customization process to produce the human joint coordinates using the video frames. Then, these joint positions are used as a reference to supervise the incremental training of the inference model that uses the mmWave signals. After the customization, only the mmWave signals and corresponding inference model are used during the device lifetime, achieving over 13-fold inference time and 131-fold power consumption savings.

Current processors used for inference at the edge (e.g., at home) have limited processing capability due to their cost and energy constraint. For example, the Nvidia Jetson Xavier NX board can perform inference using mmWave inputs in 149.7 \(\mu \)s per input frame. However, training using RGB camera input reference takes 620 ms per frame on the same device. It can barely achieve a 1.6 frame per second (FPS) operation, which is impractical considering realistic 30 FPS or higher video frame rates. Storing the video frames and performing inference later is also not practical due to excessive memory requirements. Hence, practical solutions require novel AI hardware and methodologies to perform on-device training at the edge. To address this need, we propose an energy-efficient on-device training approach that enables personalized home-based rehabilitation, PHR. The proposed approach first generates the ground truth 3D joint coordinates data using RGB cameras. These coordinates are used to supervise on-device training. Then, we customize a baseline mmWave human pose estimation model using energy-efficient
on-device training. After the customization, our framework uses mmWave radar signals and the customized home-based rehabilitation model.

In summary, this preliminary report makes the following contributions:

Big-Little Chiplets [28]:

- We propose a heterogeneous big-little chiplet-based IMC architecture that utilizes a big and little IMC-based chiplet compute structure coupled with an optimal NoP configuration (interposer and bridge).

- We present a custom mapping strategy of DNNs onto the big-little chiplet IMC architecture that exploits the non-uniform distribution of weights and activations,

- Our experiments of the proposed big-little chiplet-based RRAM IMC architecture on ResNet-50 on ImageNet achieve up to $259\times$, $139\times$, and $48\times$ improvement in energy-efficiency and lower area compared to Nvidia V100 GPU, Nvidia T4 GPU, and SIMBA [1] architecture, respectively.

On-Chip Training [29]:

- An energy-efficient on-chip training framework that customizes mmWave-based human pose estimation model for higher accuracy.

- A Resistive RAM-based in-memory computing accelerator for on-chip training and inference of mmWave and inference of RGB models.
• Experimental results that demonstrate the practical real-life use of our framework, with a 28.01% lower error, $611.1 \times$ lower inference energy, and $14.0 \times$ faster training than a baseline model on Nvidia Jetson Xavier NX [30].

The rest of the report is organized as follows. The literature survey is discussed in Chapter 2. Chapter 3 presents the first completed preliminary work, Big-Little Chiplets for IMC of DNNs, and discusses its role in large-scale computing. The second completed preliminary work, energy-efficient on-chip training approach for personalized home-based rehabilitation systems is presented in Chapter 4. The first proposed work on sparse neural network optimization is discussed in Chapter 5. Chapter 6 presents the second proposed work on carbon footprint optimization. Other work that I have completed during my research is discussed in Chapter 7. Finally, Chapter 8 concludes this report.
2 LITERATURE REVIEW

2.1 Chiplet-based Architectures

Chiplet-based architectures are well explored for high-performance computing applications [14, 15, 10, 31, 16, 13, 32]. A co-design flow considering architecture, chip, and package for a chiplet-based system is proposed in [14]. A detailed design space exploration with the proposed co-design flow shows significant improvement in power consumption and area with respect to a monolithic design. Vivet et al. [15] proposed a chiplet-based system with 96 computing cores and a 3D memory are distributed over 6 chiplets. Another recent work proposed a 2,048 chiplet (14,336 cores) wafer-scale processor that utilizes a bridge-based integration [10]. The authors discuss the challenges of designing a wafer-scale processor and provide insights into power delivery, clock routing, and testing.

Chiplet-based architectures have proven to be both more energy-efficient and cost-effective than monolithic architectures for complex DNNs. Several prior studies proposed chiplet-based architectures for DNN acceleration [1, 33, 12]. The authors of [1] proposed a fine-grained 36-chiplet architecture for DNN inference acceleration. Each chiplet utilizes a homogeneous structure with 16 PEs that operate using a weight stationary dataflow. The chiplets are connected by a 6×6 NoP mesh that utilize the ground-referenced signaling technique [21]. The authors of [12] proposed a hierarchical and analytical framework, NN-Baton, to analyze DNN mapping and communication overheads in a chiplet-based DNN accelerator. NN-Baton supports different mapping schemes of DNNs onto the chiplets. Furthermore, an
analytical model to quantify the communication overhead for NoP is also presented in NN-Baton. A family of chiplet topologies are proposed in [33]. The authors explored different chiplet topologies and compared their performance through an analytical metric which estimates latency. A chiplet-based IMC benchmarking tool for design space exploration, SIAM, is proposed in [2]. SIAM supports different chiplet architectures, IMC crossbar tile structures, NoP, NoC, and DRAM estimation. However, all prior studies assume a homogeneous chiplet structure across all chiplets interconnected by a single NoP. Furthermore, none of the prior works considered the non-uniform distribution of weights and activations in the DNN during the mapping process. Hence, many chiplets remain under-utilized while the large NoP leads to an increased area and energy overhead.

In contrast to prior works, we propose a heterogeneous big-little chiplet-based IMC architecture that combines big chiplet bank with a bridge-based NoP and a little IMC chiplet bank with an interposer-based NoP to enhance the IMC utilization and improve energy efficiency. Furthermore, we propose a customized methodology
that exploits the non-uniform distribution of DNN weights and activations in mapping the DNNs onto the big-little chiplet IMC architecture. To the best of our knowledge, this is the first heterogeneous chiplet-based IMC architecture that leverages different IMC structures collectively with a heterogeneous NoP coupled with a customized DNN mapping.

2.2 Home-based Rehabilitation Systems

Home-based rehabilitation systems draw significant attention, especially during the pandemic era, since they facilitate patient access to rehabilitation exercises at home and reduce in-person physical therapy sessions. To this end, researchers established the relationship between human joint location and rehabilitation movements [23, 24]. Authors in [23] proposed an approach that can get human joint information and face videos to relate the pain to the patient’s movement. UI-PRMD [24] dataset provides exercise data using Kinect and motion capture system. To check whether the exercises conform to standards, rehabilitation systems require accurate human pose estimation, usually obtained from RGB images [34, 35]. OpenPose [34] and HRNet [35] are the most representative approaches that achieve fast and accurate human pose estimation from RGB sources.

mmWave radar-based pose estimation addresses privacy concerns and enhances robustness to the environment compared to RGB-based approaches, thus being an emerging solution for rehabilitation systems [25, 36, 37]. These approaches map 3D mmWave point cloud to ground truth human joints using smaller CNNs.
than those processing RGB video ones since the mmWave frames are significantly smaller than their RGB counterparts. However, existing techniques focus on offline learning and algorithm design. Since they assume that offline-design CNNs will generalize to arbitrary users, they only consider inference during rehabilitation exercises. Hence, they do not deal with on-device training after a new patient starts using the system. In strong contrast, our proposed framework achieves end-to-end real-time mmWave-based human pose estimation, including training and inference.

The acceleration of both training and inference is critical for the real-time execution of applications. To this end, we utilize a Resistive RAM (ReRAM)-based in-memory computing (IMC) AI accelerator for our framework. IMC-based hardware accelerators perform computation inside memory units to reduce off-chip data communication. ReRAM-based approaches achieve high density and low energy consumption. Therefore, they are widely used for machine learning acceleration [3, 1, 38, 6, 28]. The training of CNN models is vulnerable to gradient precision and the write endurance and nonlinear properties of ReRAM architectures can cause an accuracy loss during training [39, 40]. Authors in [40] and [41] proposed methods to mitigate these problems. By utilizing these methods, on-chip training on ReRAM-based IMC accelerators is possible without seeing a significant accuracy drop.

In contrast to prior work, we propose PHR, a ReRAM-based IMC accelerator with energy-efficient on-chip training capacity for home-based rehabilitation systems. To the best of our knowledge, it is the first system that enables real-time processing of RGB image data, fast on-chip training of mmWave radar-based human pose
estimation, and energy-efficient model inference for continuous patient usage.

2.3 Task Scheduling Techniques for Heterogeneous Architectures

Schedulers have evolved significantly to adapt to different requirements and optimization objectives. Static [42, 43] and dynamic [44] task scheduling algorithms have been proposed in the literature. Completely Fair Scheduler (CFS) [44] is a dynamic approach that is widely used in Linux-based OS and aims to provide resource fairness to all processes while the static approaches presented in [42, 43] optimize the makespan of applications. CFS [44] was initially developed for homogeneous platforms, but it can also handle heterogeneous architectures (e.g., Arm big.LITTLE). While CFS may be effective for client and small-server systems, high-performance computing (HPC) and high-throughput computing (HTC) necessitate different scheduling policies. These policies, such as Slurm and HTCondor, are specifically designed to manage a large number of parallel jobs and meet high-throughput requirements [45, 46]. On the other hand, DSSoCs demand a novel suite of efficient schedulers that execute at nanosecond-scale overheads since they deal with scheduling tasks that can execute in the order of nanoseconds.

The scheduling overhead problem and scheduler complexities are discussed in [47, 48, 49]. The authors in [47] propose two dynamic schedulers, named as CATS and CPATH, where CATS detect the longest and CPATH detects the critical paths in the application. CPATH algorithm shows inefficiency in terms of its higher
scheduling overhead. Motivated by high scheduling overheads, [50] propose a new scheduler that approximates an expensive heuristic algorithm using imitation learning with low overhead. An imitation learning-based scheduler approximates an expensive heuristic with a low overhead [50]. However, the scheduling overhead is still approximately 1.1 µs, making it inapplicable for DSSoCs with nanosecond-scale task execution. Energy-aware schedulers for heterogeneous SoCs have limited applicability to DSSoCs because of their complexity and large overheads [51, 52].

Several scheduling algorithms that demonstrate the benefits of using multiple schedulers are proposed in [53, 54, 55]. Specifically, the authors in [53] propose a technique that switches between three schedulers dynamically to adapt to varying job characteristics. However, the overheads of switching between policies are not considered as part of the scheduling overhead. The approach in [55] integrates static and dynamic schedulers to exploit both design-time and runtime characteristics for homogeneous processors. The hybrid scheduler in [55] uses a heuristic list-based schedule as a starting point and then improves it using genetic algorithms. However, it does not consider the scheduling overhead of the individual schedulers. The authors in [48] discuss the performance comparison of a simple round-robin scheduler and a complex earliest deadline first (EDF) scheduler and their applicability under different system load scenarios.

Using insights from literature, we propose a novel scheduler that combines the benefits of the low scheduling overhead of a simple scheduler and the decision quality of a sophisticated scheduler (described in Section 7.1.3) based on the system workload intensity. To the best of our knowledge, this is the first approach that uses
a novel runtime preselection classifier to choose between simple and sophisticated schedulers at runtime to enable scheduling with low energy and nanosecond scale overheads in DSSoCs.
3 BIG-LITTLE CHIPLETS FOR IN-MEMORY ACCELERATION OF DNNS: A SCALABLE HETEROGENEOUS ARCHITECTURE

3.1 Overall Architecture

Figure 3.1(a) shows the top-level block diagram of the heterogeneous big-little chiplet IMC architecture. The architecture consists of two banks of IMC chiplets, a little bank (shown in yellow color) and a big bank (shown in light red color). The little IMC chiplet bank consists of chiplets with smaller and fewer IMC crossbar arrays compared to the big chiplets. It is placed on an interposer that houses the NoP. The NoP provides high bandwidth and a compact structure for on-package communication within the little chiplet bank. At the same time, the increased size and count within the big chiplet bank allow for higher computation capability. The big chiplets are directly connected to the substrate using micro-bumps. A bridge-based NoP is utilized within the big chiplet bank for on-package communication. Long wires of the bridge NoP allow easy integration of the big chiplets. We utilize the Y–X routing methodology for the NoP. Each chiplet (big and little) consists of a local DRAM (DDR4 in this work) that stores the weights required for the IMC crossbar arrays.

Figure 3.1(b) shows the structure of a IMC chiplet. Each chiplet utilizes a hierarchical structure that consists of an array of big (bottom of Figure 3.1(c)) or little IMC tiles (top of Figure 3.1(c)) and each tile consists of an array of IMC crossbars or PEs. In addition, the chiplet contains a pooling unit, non-linear activation unit,
Figure 3.1: (a) Overview of the big-little chiplet IMC architecture. The little chiplet bank utilizes smaller chiplets connected by an interposer-based NoP while the big chiplet bank utilizes bigger chiplets connected by a bridge-based NoP. Each chiplet utilizes a local DRAM, (b) IMC chiplet architecture (big and little). Each chiplet consists of an array of IMC tiles and a dedicated NoP transceiver and router, (c) The little chiplet bank consists of fewer and smaller tiles while the big chiplet bank consists of more bigger tiles. Both chiplet structures utilize a mesh-based NoC for on-chip communication, and (d) Structure of each tile within the big and little chiplet. It consists of an array of IMC crossbar arrays and associated peripheral circuits with an interconnect similar to that in [3]. The little chiplet consists of fewer and smaller IMC crossbars while the big chiplet has larger and more IMC crossbar arrays.

accumulator, and buffer. The accumulator is used for the partial sum accumulation across different tiles within the chiplet. Furthermore, the buffers allow for efficient data movement in and out of the chiplet. Each IMC chiplet consists of a dedicated NoP transceiver used for the transmission and reception of packets across the NoP. In this work, we adopt the NoP transceiver from [21]. Each transceiver consists of a local PLL circuit that provides the clock for the transceiver. A five-port router is utilized for routing of the data across the NoP.

Each IMC chiplet utilizes a local DRAM to store the weights. The local DRAM allows for external memory access, thus making our proposed big-little architecture a generic platform. If a DNN does not fit on the entire chip, the DRAM stores all the
weights necessary for each chiplet. First, the DRAM loads the necessary weights into the IMC crossbar arrays. Next, while the computation is performed, the DRAM loads the next set of weights of the DNN. The buffer is designed to support a ping-pong operation [56]. The weights from the DRAM are loaded into the first buffer stage (ping) and then moved to the second buffer stage (pong). Therefore, the big-little IMC chiplet architecture masks the DRAM latency with the computation latency, achieving high throughput.

Finally, Figure 3.1(d) shows the structure of an IMC tile. Each array in the crossbar consists of PEs that perform the computations. In this work, we focus on a resistive random-access-memory (RRAM) based IMC crossbar array due to its superior energy-efficiency [3]. The computations are performed in the analog domain by turning on all wordlines (WL) together and performing accumulation along the bitline (BL). The inputs are given through the WL while the weights are stored within the RRAM cells. Each IMC array consists of specialized peripheral circuitry that assists the computation. The peripheral circuitry includes a column multiplexer (mux), an analog-to-digital converter (ADC), a shift and add circuit, and a buffer. The column mux is used to share the ADC across columns of the IMC array. The ADC converts the MAC output in the analog domain across each column into the digital domain. The big-little IMC architecture does not utilize a digital-to-analog converter (DAC) by employing bit-serial computing. The shift and add circuit handles the positional value of each bit within the multi-bit input activations that are computed using the IMC arrays. The buffers within the tile are utilized for storing the partial sums and the input activations.
The following two sections present the implementation details and experimental evaluations, respectively.

3.2 Parameters of the Big-Little Architecture and Mapping

This section describes the implementation and mapping details of the Big-Little chiplet architecture.

The underlying non-uniform distribution of weights and activations within a DNN results in an increased number of activations in the early layers and larger number of weights in the subsequent layers (Figure 1.1). This non-uniform weight distribution leads to under-utilization of chiplets in the early layers, thus a lower overall IMC utilization. To improve the IMC utilization, crossbar arrays with smaller size (e.g. 32×32 instead of 128×128) can be used everywhere. However, using smaller crossbar arrays also leads to increasing number of chiplets in the system. In turn, larger number of chiplets in the system increases the area as well as energy consumption (due to higher relative area and energy of the peripheral circuits) masking the benefit of using chiplet-based system. Therefore, a balance between crossbar array size and number of chiplets in the system is necessary. To this end, we propose a technique to optimize the big-little chiplet configuration as discussed next.
3.2.1 Configuration of the big-little chiplets

We first determine the configuration of big-little chiplets by computing the tile utilization with different big-little chiplet configurations for a given DNN. Algorithm 1 shows our proposed technique to find the utilization. The inputs to the algorithm are

1. the set of crossbar sizes for the little chiplets (X_L) and the big chiplets (X_B),
2. set of number of tiles in the little chiplets (T_L) and the big chiplets (T_B),
3. number of little chiplets (N_L) and big chiplets (N_B),
4. the DNN structure,
5. the total number of chiplets in the system.

We note that the initial layers of the DNN are mapped on to little chiplets since there are fewer weights in the initial layers. A DNN layer is mapped on to a chiplet when number of tiles required for that layer is less than the number of remaining tiles in the chiplet, i.e., the available resource on the chiplet is sufficient for the layer (as shown in line 13–17 of Algorithm 1). Once a layer (layer-j) is mapped on to a chiplet, the tile utilization is computed as:

$$IMC_j = \left[\frac{K_j^x \times k_j^y \times N_j^{lf}}{x} \right] \times \left[\frac{N_j^{lf} \times Q}{x} \right]$$

$$u_j = 100 \times \frac{K_j^x \times k_j^y \times N_j^{lf} \times N_j^{of} \times Q}{IMC_j \times x \times x}$$

(3.1)
where K^x_j and K^y_j are the kernel sizes of layer-j, $N^{i_f}_j$ and $N^{o_f}_j$ are the number of i/p and o/p features for layer-j, Q is the quantization precision, IMC_j is the number of IMC crossbars required for layer-j and x is the IMC crossbar size ($x \times x$). Once the resources of a chiplet are exhausted, the next chiplet is considered for mapping. This process continues until no chiplet (little/big) is available.

In the proposed method, for each chiplet configuration, we obtain the average utilization for a particular DNN after each layer is mapped (line 36 of Algorithm 1). Then we sort (in descending order) the configurations based on the utilization and save the top K configurations. The above procedure is repeated for M different DNNs and the configuration with highest utilization which is common for all DNNs is considered as the final configuration for the big-little chiplet system. We note that K and M are user-defined parameters and our proposed technique is independent of these parameters.

3.2.2 Configuration of the big-little NoP

The heterogeneous chiplet configuration (discussed in Section 3.2.1) improves the overall chiplet utilization by using smaller chiplets that match well to the early layers with fewer weights. However, the initial DNN layers produce higher number of activations compared to later layers. Therefore, the volume of traffic between little chiplets (used for initial DNN layers) is higher than the traffic volume between big chiplets (used for later DNN layers). Hence, the network-on-package (NoP) configuration between little chiplets needs to be different than that of the big chiplets. To this end, we propose a technique to determine optimal NoP configuration for a
system with big-little chiplet targeted for a particular DNN. Algorithm 2 shows the
technique to determine NoP configuration for a particular DNN. The inputs to the
algorithm are:

1. big-little chiplet configuration obtained from Algorithm 1,
2. set of NoP bus width for the little chiplets (W_L) and the big chiplets (W_B),
3. set of NoP frequency for the little chiplets (F_L) and the big chiplets (F_B),
4. the DNN structure.

We evaluate the energy-delay product of communication for each NoP configu-
ration in the set of configurations. An analytical expression based evaluation is
incorporated to perform fast exploration in the NoP configuration space. First, we
evaluate communication volume of each NoP configuration given a particular DNN.
The communication volume is equivalent to the number of packets transferred
between two chiplets, and the number of packets (P) is expressed as $P = \frac{b}{w}$, where
b is the number of bits to be communicated and w is the NoP bus width. We divide
the number of packets by NoP frequency (f) to obtain an approximation of NoP
latency $d = \frac{P}{f} = \frac{b}{w \times f}$. Next, we compute NoP power consumption by assuming
that it is proportional to cube of NoP frequency [57]; $p = f^3$. Then the approximate
energy consumption (e) is computed by multiplying communication latency and
communication power; $e = d \times p$. Finally, communication EDP between each pair
of chiplet (edp) is computed as:

$$edp = e \times d = d \times p \times d = d^2 \times f^3 = \left(\frac{b}{w \times f}\right)^2 \times f^3 = \frac{b^2 \times f}{w^2}$$ (3.2)
The total communication EDP for each NoP configuration for a particular DNN is obtained by adding the communication EDP between each pair of chiplets. A total of K NoP configurations with lower EDP are saved and the above procedure is repeated for M different DNNs. The configuration with lowest cost which is common for all DNNs is considered as the final NoP configuration for the big-little chiplet system. Similar to the technique of selecting big-little chiplet configuration (described in Section 3.2.1), K and M are the user defined parameter and our proposed technique is independent of these parameters.

3.2.3 Mapping a Previously Unseen DNN to a System on big-little Chiplets

So far, we described our proposed technique to determine the optimal configuration of big-little chiplet and the NoP. The optimal configuration is determined by performing design space exploration with several DNNs. However, an unknown DNN (not seen before) may be encountered at runtime. Moreover, there is no guarantee that all the weights of a given DNN will fit in the on-chiplet resources since the number of DNN parameters seem to be continuously growing. In these cases, we need to divide the entire DNN into multiple parts and load the weights of each part from DRAM before executing. Algorithm 3 shows the DNN partitioning as well as the mapping technique. The input to the algorithm is the DNN structure, big-little chiplet configuration and big-little NoP configuration. First, we compute the number of in-memory computing bits available on the system (S_B). Specifically, for each type (little/big) of chiplets, we multiply the number of available chiplets
\(\frac{n_l}{n_b}\), the number of tiles in each chiplet \(t_l/t_b\), the number of crossbar array in each tile (16), and the size of IMC crossbar array for big and little chiplets \(x_l/x_b\).

Then we add the product for big and little chiplets to obtain the total number of in-memory computing bits available on the system \(S_B\):

\[
S_B = (n_l \times t_l \times 16 \times x_l \times x_l) + (n_b \times t_b \times 16 \times x_b \times x_b)
\]

(3.3)

Next, we compute the number of bits required to store all the weights of the DNN \(D_B\). Assuming average utilization of \(u(0 < u \leq 1)\), the total number of partitions \(Pr\) required for the DNN is computed by taking the ceiling of the quotient obtained by dividing the required number of bits to store all weights \(D_B\) by the available number of in-memory bits on the system \(S_B\):

\[
Pr = \left\lceil \frac{D_B}{S_B \times u} \right\rceil
\]

(3.4)

For each partition, first, we compute the utilization of \(i^{th}\) layer on a big chiplet \(U_{iB}\) as well as on a little chiplet \(U_{IL}\). We compute \(U_{iB}\) and \(U_{IL}\) using Equation 3.1. If the big chiplet utilization \((U_{iB})\) is less than the little chiplet utilization \((U_{iL})\) and the little chiplet bank is not exhausted, then the layer is mapped onto a little chiplet, as shown in lines 7–12 of Algorithm 3. Otherwise, we compute the number of big chiplets required \(a_B\) to map the rest of the layers. If \(a_B\) is less than or equal to the number of available big chiplets \(A_B\), then we map the rest of the layers to the big chiplet bank, else the algorithm throws an error since the resource requirement exceeds the available capacity (shown in line 18–23 of Algorithm 3). Thus, we
ensure that the initial layers with fewer weights are mapped into little chiplets and
the latter layers with higher number of weights are mapped onto big chiplets with
more computation resources. Therefore, our proposed custom mapping of the
DNN onto the big-little chiplet architecture ensures high IMC utilization.

3.3 Experimental Evaluation

3.3.1 Experimental Setup

Evaluation platform: To evaluate the proposed heterogeneous big-little IMC chiplet
architecture, we use a customized version of the open-sourced tool SIAM [2]. The
customization includes the addition of the custom mapping scheme detailed in
Section ???. In addition, we handle the big-little chiplet IMC architecture by adding
the number of each type (big/little) of chiplets, the number of tiles inside big and
little chiplets, and the big-little IMC structure. Furthermore, we also assume that
each type of chiplet can use different NoP width. The simulator performs the
mapping of a given DNN onto the big-little IMC chiplet architecture. The outputs
include area, energy, latency, throughput, energy efficiency, and IMC utilization
(for all individual components in the architecture). Finally, we add support for
intermediate DRAM access (DDR4 [58]) for each chiplet to handle the case where
all weights do not fit on the system at once. We plan to open-source the tool and
optimization methodology upon acceptance of the paper.

DNN algorithms and architectural parameters: We evaluate the proposed het-
erogeneous chiplet architecture with DenseNet-40 (0.26M) on CIFAR-10, ResNet-
Table 3.1: Set of configurations considered to determine big-little chiplet and NoP structure.

<table>
<thead>
<tr>
<th>Chiplet Configuration</th>
<th>NoP Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Values in the Set</td>
</tr>
<tr>
<td>X_L</td>
<td>{32, 64}</td>
</tr>
<tr>
<td>X_B</td>
<td>{128, 256, 512}</td>
</tr>
<tr>
<td>T_L</td>
<td>{9, 16, 25}</td>
</tr>
<tr>
<td>T_B</td>
<td>{36, 49}</td>
</tr>
</tbody>
</table>

110 (1.7M) on CIFAR-10, VGG-19 (45.6M) on CIFAR-100, ResNet-34 (21.5M) and ResNet-50 (23M) on ImageNet. We utilize an RRAM-based IMC structure for DNN inference with the following parameters: one bit per RRAM cell, a $R_{	ext{off}}/R_{	ext{on}}$ ratio of 100, ADC resolution of 4-bits with 8 columns multiplexed, operating frequency of 1GHz [59, 3], and a parallel read-out method. We use 8-bit quantization for the weights and activations, and a 32nm CMOS technology node. The chiplets are placed to achieve the least Manhattan distance. The NoP parameters include E_{bit} of 0.54pJ/bit [21], interconnect parameters width, length, and pitch for the interposer-based NoP from [21] and for bridge-based NoP from [60] (Figure 2.1), per lane NoP TX/RX area of 5,304 μm2, and NoP clocking circuit area of 10,609 μm2 [61]. In addition, we also model the μbump for both the interposer [62] and bridge-based [63] NoP by utilizing the PTM models [64].
Table 3.2: Performance comparison of each component of a homogeneous (Little only, Big only) chiplet architecture and the heterogeneous Big-Little IMC chiplet architecture for VGG-19 on CIFAR-100.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Area</th>
<th>Energy</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMC (%)</td>
<td>NoP (%)</td>
<td>NoC (%)</td>
</tr>
<tr>
<td>Little only</td>
<td>11.9</td>
<td>88.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Big only</td>
<td>44.0</td>
<td>55.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Big-Little (this work)</td>
<td>52.4</td>
<td>47.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Figure 3.2: IMC utilizations for different DNNs across different big-little chiplet-based RRAM IMC configurations for (a) ResNet-110, (b) ResNet-34, (c) VGG-19, (d) DenseNet-40. Based on the utilization, we choose crossbar size of big chiplet as 256×256 and crossbar size of little chiplet as 64×64 (256–64).

3.3.2 Big-Little IMC Structure and NoP

This section demonstrates the parameters related to big-little IMC structure and big-little NoP. Specifically, we consider four DNNs (mentioned in Section 3.3.1) and execute Algorithm 1 to determine the top 10 (K=10) configurations with highest utilization for each DNN. We consider a system with 36 chiplets to limit the total area and power consumption of the system. Table 3.1 shows the input parameters \((X_L, X_B, T_L, T_B)\) to the algorithm. We vary the number of little chiplets from 1 to 35 while maintaining the total number of chiplets to be 36. Then, we choose the best configuration which is common for all four DNNs. We observe that a system with 25 little chiplets with a 64×64 IMC crossbar and 25 tiles per chiplet, and 11 big chiplets
with a 256×256 IMC crossbar and 36 tiles per chiplet provides best utilization across all four DNNs. Figure 3.2 shows the utilization for a system with 25 little and 11 big chiplets with varying size of crossbars (both for big and little chiplet) for all four DNNs. In this case, we also fixed the number of tiles per chiplet to 25 for the little chiplets and 36 for the big chiplets. Figure 3.2 reveals that the configuration where the crossbar size of the big chiplets is 256×256 and the crossbar size of the little chiplets is 64×64 ($256-64$, 256 denotes crossbar size of big chiplets and 64 denotes crossbar size of little chiplets) shows higher utilization than other configurations for three out of four DNNs. Only in the case of ResNet-110, the configuration $256-32$ shows higher utilization than $256-64$. However, we choose $256-64$ over $256-32$ since it provides more on-chip resources, lower area and energy efficiency for the IMC crossbar array (due to peripheral circuits).

Similarly, we execute Algorithm 2 for four DNNs to obtain the NoP configuration. Table 3.1 shows the set of different NoP parameters (W_L, W_B, F_L, F_B used as inputs to Algorithm 2). The parameters are adopted from [65]. EDP for NoP is obtained for all NoP configurations for the four DNNs. Then, the NoP configuration having the lowest EDP for all four DNNs is chosen. Based on the EDP results, the big NoP frequency and the little NoP frequency is set to 600 MHz and 1 GHz, respectively; the big NoP bus width and the little NoP bus width is set to 24 and 32, respectively. Figure 3.3 shows the normalized NoP EDP for different combination of bus width for big and little chiplets. For illustration purpose, we show VGG-19 and ResNet-34 since these two DNNs utilize more than 34 out of 36 chiplets. From Figure 3.3, it is observed that the configuration with big NoP bus width of 24 and little NoP bus
Figure 3.3: Normalized NoP EDP for different bus-widths for VGG-19 and ResNet-34. The NoP with bus width of 24 for big and 32 for little chiplets (24–32) shows lowest EDP.

Table 3.3: Performance comparison of a homogeneous (Little only, Big only) chiplet architecture and the heterogeneous Big-Little IMC chiplet architecture for different DNNs.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Utilization (%)</th>
<th>Area (mm²)</th>
<th>Energy (mJ)</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little only</td>
<td>69</td>
<td>58</td>
<td>93</td>
<td>171.7</td>
</tr>
<tr>
<td>Big only</td>
<td>44</td>
<td>59</td>
<td>32</td>
<td>82</td>
</tr>
<tr>
<td>Big-Little (this work)</td>
<td>88</td>
<td>93</td>
<td>90</td>
<td>98</td>
</tr>
</tbody>
</table>

width of 32 shows the lowest EDP. Since little chiplets produce higher number of activations than the big chiplets, it is intuitive that little NoP are wider (larger bus width) than the big NoP.

3.3.3 Comparison with Baseline Architectures with Homogeneous Chiplets

We compare the performance of our proposed big-little chiplet architecture with respect to two baseline architectures with homogeneous chiplets [2]. 1) Little
only: In this configuration, we consider a system where the configuration of all
chiplets as well as the NoP is same as that of the little chiplets. 2) Big only: In this
configuration, we consider a system where the configuration of all chiplets as well
as the NoP is same as that of the big chiplets. We note that, the total number of
chiplets with ‘Little only’ and ‘Big only’ configurations vary for different DNNs.

Table 3.2 shows the performance comparison for ‘Little only’, ‘Big only’ and the
proposed big-little architectures for VGG-19 on CIFAR-100. In this table, the per-
formance of each component of the architecture, i.e. IMC, NoP and NoC is shown.
Our proposed big-little chiplet architecture results in a balanced distribution of the
area among the circuit and NoP components, while the NoC accounts for a minimal
portion (0.2%) of the total area. In ‘Little-only’ architecture, NoP becomes the bot-
tleneck for area since the chiplets have smaller size, hence more number of chiplets
are required which increases the NoP. In ‘Big only’ architecture, NoP consumes
more energy due to higher volume of data movement between each pair of chiplets.
In contrast, the proposed big-little architecture with its high IMC utilization and
reduced on-chip communication as well as on-package data movement results in
less total energy consumption and less inference latency. Overall, the proposed
heterogeneous big-little architecture achieves up to 10.9× lower area, 4.1× lower
energy, and 2.7× lower latency than ‘Little only’ and ‘Big only’ architectures.

Next, we compare the IMC utilization and the performance (area, energy and la-
tency) for ResNet-110, VGG-19, DenseNet-40, and ResNet-34 against ‘little only’ and
‘big only’ architecture. For VGG-19, our proposed big-little architecture achieves
the highest IMC utilization of 93% compared to 92% and 59% for ‘Little only’ and
‘Big only’, respectively. Similarly, the big-little architecture achieves 88%, 90%, and 98% IMC utilization for ResNet-110, DenseNet-40, and ResNet-34, respectively, up to 2.8× greater than ‘Little only’ and ‘Big only’ architectures. We observe that the big-little architecture provides **up to 7.8× improvement in energy and up to 21× improvement** in inference latency with respect to baseline homogeneous architectures. ‘Big only’ architecture consumes less energy and less latency than big-little architecture for ResNet-34, but in this case, the area of ‘Big only’ is 6.8× higher than big-little architecture. To better analyze the performance comparison, we plot the energy-delay-area product (EDAP) for all DNNs, as shown in Figure 3.4. The big-little chiplet architecture provides up to 329× lower EDAP than the ‘Little only’ and ‘Big only’ architectures across all four DNNs. Although ‘Big only’ architecture shows improvement in energy consumption and inference latency with respect to big-little for ResNet-34, the EDAP with ‘Big only’ is 1.3× higher than big-little architecture in this case. Hence, the proposed big-little IMC architecture achieves optimal performance through reduced EDAP at higher IMC utilization across different DNNs.

3.3.4 Results with DRAM (DDR4)

In this section, we show the performance results when the resource on a big-little chiplet-based system is not sufficient to store all the weights of a given DNN. In that case, the DNN is divided into multiple partitions. One partition is mapped on to the big-little chiplets at a time. While the computations of a partition of the DNN are performed, the weights corresponding to the next partition are loaded
from the DRAM into the ping-pong buffer. The additional DRAM accesses result in increased energy. At the same time, the impact on latency is reduced through the ping-pong buffers [56]. Table 3.4 shows the ratio between DRAM energy and compute energy for VGG-16 and VGG-19 with systems having different number of chiplets. We observe that, the ratio of DRAM energy to computation energy increases with reduction in the system sizes for both the DNNs. With decreasing system size, more weights need to be stored and loaded from DRAM, thereby increasing DRAM energy.

3.3.5 Comparison with State-of-the-art Work

Table 3.5 shows the comparison of the proposed heterogeneous big-little RRAM IMC chiplet architecture with an Nvidia T4 and V100 GPU, and SIMBA [1]. The
Table 3.4: Ratio between DRAM energy and compute energy for VGG-16 and VGG-19 with systems having different number of chiplets (**All weights of VGG-19 fit on chip with this configuration, significantly reducing the DRAM energy).

<table>
<thead>
<tr>
<th># Chiplets</th>
<th>VGG-16</th>
<th>VGG-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>#partitions</td>
<td>Ratio</td>
<td>#partitions</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table 3.5: Comparison with other platforms for ResNet-50 on ImageNet (*reported in [1]).

<table>
<thead>
<tr>
<th>Platform</th>
<th>Area (mm²)</th>
<th>Energy Efficiency (Images/s/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nvidia V100 GPU*</td>
<td>815</td>
<td>8.3</td>
</tr>
<tr>
<td>Nvidia T4 GPU*</td>
<td>525</td>
<td>15.5</td>
</tr>
<tr>
<td>SIMBA [1]</td>
<td>215</td>
<td>45</td>
</tr>
<tr>
<td>Big-Little (this work)</td>
<td>85</td>
<td>827</td>
</tr>
</tbody>
</table>

big-little chiplet architecture achieves a lower area for the architecture due to the custom RRAM-based IMC and the optimized NoP structure. Compared to the Nvidia V100, Nvidia T4, and SIMBA architecture, the big-little IMC architecture achieves $9.6\times$, $6.2\times$, and $2.5\times$ area improvement and $99.6\times$, $53.4\times$, and $18.4\times$ energy-efficiency improvement, respectively. The improved energy efficiency is attributed to the higher IMC utilization, analog computation within the RRAM-based IMC, reduced NoP data movement and bus width, and the absence of intermediate DRAM transactions for weights and partial sums.
Algorithm 1 Determining Big-Little Chiplet Configuration

1: **Input:** DNN structure, number of chiplets (N_C), set of crossbars sizes for the little chiplets (X_L) and the big chiplets (X_B); set of number of tiles in the little chiplets (T_L) and the big chiplets (T_B); number of little chiplets (N_L) and number of big chiplets (N_B)

2: **Output:** Tile utilization for each configuration i (U_i)

3: $N_{cfg} \leftarrow$ number of configurations in the set containing all possible combinations of the elements in $X_B, X_L, T_L, T_B, N_L, N_B$

4: $L \leftarrow$ number of DNN layers

5: **for** $i = 1 : N_{cfg}$ **do**

6: $n_l = \text{Number of little chiplets in Config-}i$

7: $n_b = \text{Number of little chiplets in Config-}i$

8: $j \leftarrow 0$ // Number of layers already mapped

9: $U \leftarrow 0$ // Sum of utilization

10: $n_l^u \leftarrow 0$ // Number of little chiplets used

11: **while** $n_l^u \leq n_l$ and $j < L$ **do**

12: $j_t \leftarrow \text{Number of tiles required for layer-}j$

13: $r_l \leftarrow \text{Number of remaining tiles in the little chiplet}$

14: **if** $j_t < r_l$ **then**

15: \hspace{1cm} Map layer- j to the little chiplet

16: \hspace{1cm} $u_j \leftarrow \text{Tiles utilization for layer-}j$ (Eq. 3.1)

17: \hspace{1cm} $U = U + u_j$

18: \hspace{1cm} $j = j + 1$

19: **end if**

20: **end while**

21: $n_l^u \leftarrow n_l^u + 1$

22: **end for**

23: $n_b^u \leftarrow 0$ // Number of big chiplets used

24: **while** $n_b^u \leq n_b$ and $j < L$ **do**

25: $j_t \leftarrow \text{Number of tiles required for layer-}j$

26: $r_b \leftarrow \text{Number of remaining tiles in the big chiplet}$

27: **if** $j_t < r_b$ **then**

28: \hspace{1cm} Map layer- j to the big chiplet

29: \hspace{1cm} $u_j \leftarrow \text{Tiles utilization for layer-}j$ (Eq. 3.1)

30: \hspace{1cm} $U = U + u_j$

31: \hspace{1cm} $j = j + 1$

32: **else**

33: \hspace{1cm} $n_b^u = n_b^u + 1$

34: **end if**

35: **end while**

36: $U_i = \frac{U}{t}$

37: **end for**
Algorithm 2 Determining Big-Little NoP Configuration

1: Input: DNN structure, number of chiplets (N_C), set of NoP bus widths for the little chiplets (W_L) and the big chiplets (W_B); set of NoP frequency for the little chiplets (F_L) and the big chiplets (F_B), mapping of layers to the big-little chiplet ($\mathcal{L} \to \mathcal{C}$)
2: Output: NoP EDP for each configuration-i (E_i)
3: $N_{cfg} \leftarrow$ number of configurations in the set containing all possible combinations of the elements in W_L, W_B, F_L, F_B
4: $L \leftarrow$ number of DNN layers
5: n_L = Number of little chiplets
6: n_B = Number of big chiplets
7: for $i = 1 : N_{cfg}$ do
8: w_l = Bus-width of little chiplets in Config-i
9: w_b = Bus-width of big chiplets in Config-i
10: f_l = NoP frequency of little chiplets in Config-i
11: f_b = NoP frequency of big chiplets in Config-i
12: $E_i \leftarrow 0$ // Initializing EDP of Config-i
13: for $j = 1 : n_L$ do
14: Compute edp_j by from Equation 3.2
15: $E_i = E_i + edp_j$ // Communication EDP
16: end for
17: for $k = 1 : (n_B - 1)$ do
18: Compute edp_k from Equation 3.2
19: $E_i = E_i + edp_k$ // Communication EDP
20: end for
21: end for
Algorithm 3 Mapping DNN Layers to Big-Little Chiplets

1: **Input:** DNN layers (\mathcal{L}), IMC crossbar size in Big chiplet (x_b), IMC crossbar size in little chiplet (x_l), number of tiles in big chiplets (t_b), number of tiles in little chiplets (t_l), number of available big chiplets (n_b), number of available little chiplets (n_l)

2: **Output:** Mapping of layers to big-little chiplet ($\mathcal{L} \rightarrow \mathcal{C}$)

3: Compute S_B by following Equation 3.3

4: Compute Pr by following Equation 3.4

5: for $j = 1 : Pr$ do

6: \mathcal{L}_j → DNN layers for partition-j; $\mathcal{L}_j \in \mathcal{L}$

7: for $i = 1 : |\mathcal{L}_j|$ do

8: $a_L \rightarrow 1$ // Number of little chiplets used

9: Compute utilization of i^{th} (U^i_B) layer on a big chiplet using x_b, t_b

10: Compute utilization of i^{th} (U^i_L) layer on a little chiplet using x_l, t_l

11: if (($U^i_B < U^i_L$) & ($a_L \leq A_L$)) then

12: Map i^{th} layer to little chiplet.

13: if Resource in a_L is exhausted then

14: $a_L \rightarrow a_L + 1$

15: end if

16: else

17: Compute # of big chiplets (a_B) required to map layer-i – layer-$|\mathcal{L}_j|$

18: assert($(a_B \leq A_B)$, ‘Error‘)

19: for $k = i : |\mathcal{L}_j|$ do

20: Map k^{th} layer to big chiplet.

21: end for

22: break

23: end if

24: end for

25: end for
4 ENERGY-EFFICIENT ON-CHIP TRAINING FOR CUSTOMIZED HOME-BASED REHABILITATION SYSTEMS

4.1 Home-Based Rehabilitation System

This section first overviews the proposed system. Then, Section 4.1.2 presents the proposed hardware platform used for the on-chip training and inference. Section 4.1.3 discusses the on-chip training and ground truth generation. Finally, Section 4.1.4 presents hardware implementation.

4.1.1 Overview of the Proposed PHR System

Initial Offline Training: The initial inference model, a CNN in this work, is trained offline using a limited set of users. Two video cameras and a mmWave radar detect the patients’ movements during training. An RGB-CNN [35] model transforms the video frames to 2D joint coordinates. Then, we find the 3D joint coordinates by triangulating 2D joints from two cameras. Finally, these coordinates are used as references for supervised training of a mmWave-CNN [25] model that can produce joint coordinates using only the mmWave radar, as shown in Fig. 4.1.

Customization at Home: The initial mmWave-CNN can have a poor performance when a new patient starts using it at home, as demonstrated in Section 4.2. Therefore, we personalize it to the new user before continuous execution in three steps. First, we activate RGB cameras for a short duration and generate the 2D joint coordinates by employing the RGB-CNN model used in the initial training. Then,
the 3D joint coordinates are found in the same way as the initial training. Finally, we incrementally train the mmWave-CNN using these reference coordinates and mmWave signals as inputs. After the customization, the new user uses the product only with mmWave signals and the inference of mmWave-CNN model for rehabilitation feedback. Running RGB-CNN for RGB image inference and mmWave-CNN for both on-chip training and inference are not feasible on a conventional SoC, as demonstrated in Section 4.2. Therefore, we propose an IMC-based hardware accelerator to perform these tasks.

In summary, the proposed PHR pipeline consists of (i) taking RGB images with two cameras, (ii) inferring 2D human key points from the images using RGB-CNN, (iii) obtaining ground truth 3D human joints by triangulating two 2D human joints, and (iv) training and inferring the human joints with mmWave signals using mmWave-CNN.
4.1.2 In-Memory Computing-based Hardware Acceleration

We employ an in-memory computing (IMC)-based hardware accelerator because it combines highly-dense storage and computation into the same hardware unit. It also alleviates the latency and energy consumption of memory accesses. Energy-efficient DNN accelerators utilizing IMC technology [3, 1, 6] have been proposed in the literature in the last few years. IMC-based architectures integrate multiple processing units, called tiles, into the system, as shown in Fig. 4.2. These tiles are connected via a network-on-chip (NoC) for the data communication of activations, errors, and gradients. Each tile has processing elements along with input/output buffers and an accumulator. Processing elements are composed of crossbar arrays that store the neural network model weights and perform computations and peripheral circuits such as ADCs, adder trees, and buffers. This work uses the mapping methodology described in [41] to map the weights onto the crossbar arrays. We used a ReRAM-based IMC architecture for inference and training. We also include an SRAM-based hardware block for training to avoid excessive writes to the ReRAM crossbar arrays because of the write endurance issues of ReRAM. The IMC architecture also includes activation units, buffers, and accumulators. More detailed discussions about the on-chip training on IMC accelerators and hardware configurations are provided in Section 4.2.

4.1.3 On-Chip Training for Personalization of mmWave-CNN

To customize the inference model, mmWave-CNN, to a new user, we first need the ground truth joint coordinates. We use two RGB cameras on the edge device to get
precise 3D joint coordinates, as described in Section 4.1.1 and Fig. 4.1. The reason for utilizing two RGB cameras is that we can generate the ground truth with minimum error with two RGB images. Two RGB images are then processed by the RGB-CNN model. For the RGB-CNN model, we followed the structure given in [35], which has 28.5M parameters with a backbone pre-trained on the ImageNet dataset. Then, we generate 3D human joint coordinates by triangulating a pair of 2D human joints. The mmWave radar sensor provides inputs to mmWave-CNN model. The mmWave-CNN [25] is composed of 3.2M parameters with two convolutional layers followed by two fully connected layers. The radar sensor generates a point cloud which is composed of points reflected from an object in sight. For each point, the radar sensor generates five features which will be used as inputs for the mmWave-CNN model. These are x, y, and z coordinates, the Doppler velocity, and the reflection intensity. Then, using the radar data, we customize the baseline mmWave-CNN model to the new user’s body pose with the on-chip training on the IMC hardware accelerator. The training consists of four parts: feedforward, error calculation, weight gradient calculation, and weight update. Each step requires DRAM access to store and load the necessary data, as there are thousands of input data. The accuracy and on-chip training results are discussed in Section 4.2.3 and 4.2.5. After the on-chip training, the mmWave-CNN is customized for the new user. Finally, the last step in the framework is the customized mmWave-CNN model inference that is performed on the IMC accelerator using the tiles of crossbar arrays.
Figure 4.2: The architecture of IMC-based hardware accelerator. Feedforward, error calculation, and weight update stages are performed in the accelerator tiles whereas the weight gradient calculation is executed in the weight gradient block. Tiles are connected via NoC. (R: NoC Router)

4.1.4 Hardware Implementation and Exploration

The crossbar array sizes in each tile affect the structure and performance of the IMC hardware accelerator. Smaller crossbar arrays increase the number of tiles, resulting in traffic congestion in the NoC because of high data movement. In contrast, larger array sizes reduce the utilization of the IMC accelerator. Thus, it causes an area overhead compared to small crossbar sizes. Therefore, we explore the hardware parameters to achieve optimal energy and area efficiency, as discussed in Section 4.2.5.

ReRAM-based architectures are vulnerable to the write endurance problem and nonlinear properties. These properties include device-to-device (D2D) and cycle-to-cycle (C2C) variations, long-term potentiation (LTP), and long-term depression (LTD) [39]. Therefore, we analyzed the nonlinear properties of ReRAM-based IMC hardware accelerator design. Detailed explorations of nonlinear properties, variations, and their effects on the accuracy are given in Section 4.2.5. The on-chip training for the customization is an incremental training approach that requires
less number of epochs, thus the lower number of writes on the crossbar arrays. Therefore, our framework can achieve better accuracy without assuming limitless writes.

We use the following parameters in our IMC-based accelerator design: an ADC precision of 4 bits, 8-bit quantization for weights and activations, one bit per ReRAM cell, an $R_{\text{off}}/R_{\text{on}}$ ratio of 100, and 1 GHz operating frequency, and 32 nm technology node [3]. We employ NeuroSim V2.1 [41] to evaluate the performance and area of the proposed ReRAM-based IMC hardware accelerator and data communication between the main memory and the accelerator. NeuroSim V2.1 supports both inference and training on-chip. Only the weight gradient calculation part requires extra hardware (SRAM) for the on-chip training because this stage needs heavy writing of errors into the arrays along the batch. Feedforward, error calculation, and weight update stages are implemented on the ReRAM tiles. Data movement within the accelerator between tiles via an NoC is evaluated using a customized version of BookSim [2]. In this version, we use a traffic trace-based cycle-accurate execution using a mesh NoC architecture.

4.2 Experimental Results

4.2.1 Experimental setup

We conduct our experiments with the mRI open-source mmWave human pose estimation dataset [26]. mRI offers over 160K synchronized 3D point cloud from mmWave radar (TI IWR1443) [66], and ground truth 2D and 3D human joints
from two Kinect V2 cameras [67]. It evaluates ten clinical-suggested rehabilitation movements covering the main parts of the human body, performed by twenty diverse subjects. The dataset benchmarks mmWave-based human pose estimation using HRNet-W32 [35] (images to 2D key points) and MARS [25] (mmWave point cloud to 3D human joints). HRNet-W32 and MARS generate 17 human joint points in 2D and 3D space, respectively. We implemented these CNN-based networks as the RGB-CNN and mmWave-CNN models using PyTorch. For the initial training, we used an SGD optimizer with momentum \((\beta = 0.9)\), and an initial learning rate of 0.001 for 100 epochs with a batch size of 128.

4.2.2 Baseline Accuracy before Customization

We trained the baseline MARS model using half of the user subjects in the dataset. To produce accurate results, we generated three random sets given in Table 4.1. Then, the trained baseline model is tested against the remaining ten subjects for each set. We used \textit{Mean Per Joint Point Error} (MPJPE) and \textit{Procrustes Analysis} MPJPE (PA-MPJPE) metrics, which are widely used for human joint estimation studies [68]. MPJPE calculates the mean Euclidean distance between the reference

<table>
<thead>
<tr>
<th>Sets</th>
<th>Training Subjects</th>
<th>Test Subjects</th>
<th>MPJPE (mm)</th>
<th>PA-MPJPE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-3,7,9,14,16,17,19,20</td>
<td>4-6,8,10-13,15,18</td>
<td>130.7 ± 3.4</td>
<td>76.4 ± 1.4</td>
</tr>
<tr>
<td>2</td>
<td>1,2,5-7,9,13,17-19</td>
<td>3,4,8,10-12,14-16,20</td>
<td>133.5 ± 2.5</td>
<td>78.4 ± 1.9</td>
</tr>
<tr>
<td>3</td>
<td>3,5,6,8,10-12,14,18,20</td>
<td>1,2,4,7,9,13,15-17,19</td>
<td>134.5 ± 1.2</td>
<td>78.5 ± 1.1</td>
</tr>
</tbody>
</table>
and the prediction joints. PA-MPJPE uses a similarity transformation for a further rigid alignment.

The \textit{mmWave-CNN} model achieves 130.7 mm MPJPE and 76.4 mm PA-MPJPE for the test subjects in \textit{Set-1}. In contrast, the corresponding errors for the subjects in the training set are 97.8 mm and 57.1 mm, which is about 25\% lower. The results are similar for other sets with slightly over 130.7 mm MPJPE and 76.4 mm PA-MPJPE for the test subjects, as shown in Table 4.1. These results show that the initial model can achieve very high accuracy for the known subjects, but the accuracy degrades for new users. Even if one can improve the test accuracy by adding users to the training set, it is impractical to add all potential users who will buy the rehabilitation system. Therefore, enabling incremental online training at the edge is imperative to adapt the initial model to new users.

4.2.3 Test Accuracy after Customizing to New Users

On-device training for customization comprises three steps:

1. The video camera is activated for a short period (2.5 minutes, i.e., 4500 frames),

2. The \textit{RGB-CNN} model inference generates the ground truth joint coordinates used for supervision,

3. The baseline \textit{mmWave-CNN} model is incrementally trained using the point cloud data from the mmWave radar sensor as input and the ground truth joint coordinates from step 2 as labels.
Figure 4.3: MPJPE and PA-MPJPE comparisons for all three random sets. Results show MPJPE and PA-MPJPE before customization using 10 subjects for training and after customization which is customized for each test subject separately. Parts (a), (b), and (c) represent Set-1, Set-2, and Set-3 results, respectively. As they are randomly split, each plot shows the results for different subjects.

We employ the three random sets used for baseline accuracy analysis (Table 4.1) to evaluate the proposed on-device learning technique. Specifically, we customize the baseline model for each subject in the test subjects one-by-one. Fig. 4.3 compares the accuracy of the personalized model to the baseline model. Both MPJPE and PA-MPJPE results improve significantly for all users in Set-1, as shown in Fig. 4.3(a). On average, the customization improves the MPJPE and PA-MPJPE by 23.89% and 22.94%, respectively. Most importantly, the average MPJPE and PA-MPJPE reduce
Table 4.2: Hardware results for mmWave-CNN model inference and training on Jetson Xavier NX with 2 configurations and our framework with 2 configurations and the speedup comparisons. 128$ \times $128 and 256$ \times $256 represent the crossbar array sizes. (P: PHR, J: Jetson)

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Jetson-1 (2 CPUs)</th>
<th>Jetson-2 (6 CPUs)</th>
<th>PHR-1 (128x128)</th>
<th>Improvement (\times)</th>
<th>PHR-2 (256x256)</th>
<th>Improvement (\times)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (mW)</td>
<td>3379.0</td>
<td>8724.0</td>
<td>12.1</td>
<td>277.8</td>
<td>717.3</td>
<td>25.7</td>
</tr>
<tr>
<td>Time per frame (µs)</td>
<td>162.2</td>
<td>149.7</td>
<td>10.8</td>
<td>15.0</td>
<td>13.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Energy per frame (µJ)</td>
<td>548.0</td>
<td>1305.9</td>
<td>1.1</td>
<td>488.8</td>
<td>1162.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (mW)</td>
<td>9761.4</td>
<td>9986.0</td>
<td>2954.5</td>
<td>3.3</td>
<td>3.4</td>
<td>4223.3</td>
</tr>
<tr>
<td>Time per frame (µs)</td>
<td>306.9</td>
<td>299.4</td>
<td>32.3</td>
<td>9.5</td>
<td>9.2</td>
<td>21.8</td>
</tr>
<tr>
<td>Energy per frame (µJ)</td>
<td>2995.4</td>
<td>2989.6</td>
<td>95.6</td>
<td>31.3</td>
<td>31.2</td>
<td>92.3</td>
</tr>
</tbody>
</table>

In conclusion, the customized model performs consistently and significantly better than the baseline model for all subjects in each random set, enabling accurate feedback necessary for home-based rehabilitation.

4.2.4 Energy and Performance Results

Home-based rehabilitation systems should run on a compact edge device for the practicality of the approach. Therefore, we implemented the baseline model on an Nvidia Jetson Xavier NX [30] board for hardware performance comparisons. The Jetson board has 6 Carmel Arm CPU cores, an Nvidia GPU with 384 CUDA cores, and 48 tensor units. We compared the hardware results of our framework against the Jetson board for both training and inference.

Model Inference: We used two different hardware configurations for performance
comparisons. *Jetson-1* and *Jetson-2* shown in Table 4.2 have 2 and 6 active CPU cores (1.9 GHz) and GPU (1.1 GHz) on the board for processing, respectively. The Jetson board’s power consumption is on the Watts scale (3.38 and 8.7 W). The latency per frame varies between 149.7 µs and 162.2 µs. The lower energy consumption per frame comes from *Jetson-1* with 548 µJ as it utilizes 2 CPU cores.

Similarly, we evaluated the proposed IMC accelerator using two configurations. The crossbar sizes are selected as 128 × 128 and 256 × 256 for PHR-1, and PHR-2, respectively. The detailed hardware exploration is discussed in Section 4.2.5. Our accelerator’s power consumption is on the scale of milliwatts (12.1 to 25.7 mW) which results in improvements up to 717.3× compared to the Jetson board. The latency per frame are 10.8 µs and 4.2 µs for PHR-1 and PHR-2, respectively. When we compare against Jetson configurations, PHR-2 shows a higher speedup with 38.5× and 35.5× against *Jetson-1* and *Jetson-2*, respectively. We see considerable improvements in energy consumption as IMC accelerators are highly energy-efficient. The energy consumption per frame of PHR is 1.1 and 0.9 µJ for PHR-1 and PHR-2, respectively. PHR-2 has a greater improvement in energy consumption with 611.1× and 1452.7× compared against *Jetson-1* and *Jetson-2*, respectively, as it has less number of tiles and less NoC energy.

Model Training: Table 2 also shows the model training results of our proposed framework and Jetson configurations. We include two sets of results, one per epoch and one per frame. The latency per epoch for *Jetson-1* and *Jetson-2* are measured as 1.37 and 1.34 seconds, whereas PHR-1 and PHR-2 achieve 0.14 and 0.09 seconds, respectively. PHR-2 shows a higher speedup of 14.0× and 13.7×
against Jetson-1 and Jetson-2 configurations. The energy consumption of Jetson-1 and Jetson-2 configurations are both 13.4 J. PHR-1 and PHR-2 achieve 0.43 J and 0.41 J, respectively, which results in an improvement of 31.3× and 31.2× for PHR-1 and 32.4× and 32.3× against Jetson-1 and Jetson-2, respectively. The energy consumption reduction of training is lower than that of inference. The reason is the high DRAM access required in the training and the gradient calculation performed in the IMC accelerator’s SRAM block. SRAM IMC consumes higher energy than the ReRAM crossbar array but because of the write endurance problem seen in ReRAM crossbar arrays, writing too much data on ReRAM is not practical. PHR-1 achieves an improvement of 3.3× and 3.4× against Jetson-1 and Jetson-2 configurations, respectively while PHR-2 achieves an improvement of 32.3× and 2.4× against Jetson-1 and Jetson-2 configurations, respectively.

Our framework also utilizes HRNet-W32 as the RGB-CNN model for the ground truth joint coordinate generation. Table 4.3 compares the results on the Nvidia Jetson board to the proposed framework. The energy consumption per frame is 9.1 J with a latency of 622.2 ms for Jetson, while they are 0.05 J and 9.7 ms for PHR. The energy consumption and latency of RGB-CNN inference are higher than mmWave-CNN model because HRNet-W32 is a deeper network with densely connected layers. It requires more DRAM accesses for data movement as all the network weights do not fit in the accelerator. Despite this, it can provide sufficient performance to process at runtime with over 30 FPS.
Table 4.3: Hardware results for RGB-CNN inference on Jetson Xavier NX with 6 CPU cores and our framework with 256 × 256 crossbars.

<table>
<thead>
<tr>
<th></th>
<th>Jetson</th>
<th>PHR</th>
<th>Improvement (×)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power (W)</td>
<td>14.5</td>
<td>0.4</td>
<td>34.8</td>
</tr>
<tr>
<td>Time per frame (ms)</td>
<td>622.2</td>
<td>9.7</td>
<td>64.1</td>
</tr>
<tr>
<td>Energy per frame (J)</td>
<td>9.1</td>
<td>0.05</td>
<td>782</td>
</tr>
</tbody>
</table>

4.2.5 Hardware Architecture Exploration

Crossbar Array Size: We next analyze the effect of the crossbar sizes in each tile. Previous sections considered only 128 × 128 and 256 × 256 array sizes. When we reduce the size to 64 × 64, the inference latency (356.7 µs) becomes higher than the Jetson board latency, making the configuration impractical. At the same time, an array size larger than 256 × 256 reduces the utilization to less than 50% and also increases the area overhead. Therefore, we decided to use only PHR-1 and

![Figure 4.4: PA-MPJPE comparisons for the baseline model (Baseline), a customized model with nonlinear properties (Nonlinear), and a customized model without nonlinear properties (Ideal) for 10 test subjects from Set-2.](image-url)
PHR-2 configurations which have 128×128 and 256×256 crossbar array sizes in our evaluations.

Nonlinear Properties of ReRAM: Our analysis assumes a C2C variation of 2%, D2D variation of 0.1%, and nonlinearity of 0.5/-0.5 following [38]. An ideal case would have no variations and nonlinearities. Fig. 4.4 compares the PA-MPJPE with the selected nonlinear properties and the ideal case for user Set-2. On average, we see an improvement of 24.3% and 29.8% against the baseline model for Nonlinear and Ideal cases, respectively. The difference between the cases varies between 3.1% and 8.1%, with an average of 5.5% for ten subjects. Note that even with the nonlinear properties of ReRAM, we can achieve significant improvements compared to the baseline model after the customization.
5 PROPOSED WORK – 1: COMMUNICATION-AWARE SPARSE NEURAL NETWORK OPTIMIZATION

Deep neural networks (DNNs) exhibit a high degree of redundancy due to dense interconnections between successive layers. Besides posing overfitting risks, redundant connections increase the communication cost and implementation overhead, thus leading to lower performance and energy efficiency when implemented in hardware. Indeed, many pruning techniques aim at removing DNN connections with minimal impact on their accuracy [69, 70, 71]. Sparse neural networks are preferred since they can enable minimal communication and implementation overhead, thus significantly reducing the computation and memory requirements.

Sparse inter-layer connections enable significantly faster and more energy-efficient DNNs. However, sparsity alone is not sufficient since good algorithmic performance does not necessarily translate into real performance on hardware. For instance, some inter-layer connections can lead to long paths when mapped on hardware. Consequently, they can undermine the overall hardware performance due to high communication latency and energy costs. For example, the sparse evolutionary training (SET) approach [72] drastically decreases the training time using sparse graphs instead of pruning a trained network; this makes the training scalable, while improving the test accuracy on a wide range of datasets, including multi-layer perceptron (MLP) and convolutional neural networks (CNNs) for unsupervised and supervised learning.

Although it can achieve higher accuracies, the networks remain oblivious to
Figure 5.1: Percentage contribution to inference latency for various networks on two datasets. The communication latency can take up to 43% of the total inference latency.

Although sparse training can achieve a higher accuracy than a network with no
Figure 5.2: Overview of the proposed approach. It consists of mapping the target DNN onto the target architecture using latency-aware mapping and hardware-aware dynamic sparse training. The training process first replaces the DNN layers with sparse graphs; then, at the end of each epoch, employs hardware-aware pruning and link addition. Each circle in the target DNN represents the feature map of DNNs; each link in the target DNN represents the weights of DNNs. The weights are mapped onto the in-memory computing (IMC) tiles with the same color as the corresponding links. The circles and the rectangles in the target architecture denote the NoC routers and IMC tiles, respectively.

pruned links [74], if the network remains oblivious to the target hardware while pruning and adding links, then, this can lead to unacceptable latency and power overheads. Therefore, there is a strong need for hardware and communication-aware sparse training methodologies that can lead to shorter communication distances when the DNN layers are mapped onto hardware resources.

Starting from these observations, we propose a novel communication-aware sparse neural network optimization technique applicable to both fully connected and convolutional layers. The first step of the proposed technique maps the DNN layers on the target hardware resources, e.g., to the processing tiles of an NoC. Our proposed mapping technique minimizes the distance the packets between two consecutive DNN layers need to travel in the NoC which helps reducing the overall communication latency. The second step performs hardware-aware dynamic
sparse training. Suppose two nodes in the DNN are connected by links with non-zero weights. If these DNN nodes are mapped onto different tiles on the NoC, the activations generated between these nodes will incur communication costs during inference. The proposed technique prunes the $p-$percent of the weights based on the significance of weight columns towards any inference decision per unit communication cost. Finally, we maintain the target sparsity throughout the training process by choosing an equal number of weight columns ($p-$percent) with the smallest communication cost and adding them back to the network at the end of each epoch.
6 PROPOSED WORK – 2: CARBON FOOTPRINT OPTIMIZATION

The artificial intelligence (AI) era is rising at a pace not seen before. The machine learning model sizes and required computations increased five orders of magnitude from 2018 to 2022, and we expect to see this trend continue. The increase in computation resulted in high energy consumption and resource usage, which led to an unsustainable environment and a high carbon footprint. Considering the trend in AI computing, National Science Foundation started a program that targets a sustainable computing program in 2022. Sustainable AI is a promising solution that targets environmentally sustainable models by measuring and reducing the carbon footprint of the development and production of AI models.

For sustainable AI, developing tools is crucial to detect, model, and alleviate carbon footprint activity. Existing carbon footprint tools [75, 76, 77, 78, 79, 80, 81] monitor central processing units (CPU), graphical processing units (GPU), and memory consumptions. However, in recent years, custom hardware designs like machine learning accelerators have been commonly used for AI models’ training and inference processes because of their superior performance and energy efficiency. These accelerators have been used in various systems, from servers to edge devices. For example, on-device learning using accelerators gets interest as it improves data privacy [82]. On the other hand, using federated learning for a small ML model can have a comparable carbon footprint with orders of magnitude bigger transformer models [83]. Therefore, it is also essential to reduce the carbon footprint at the edge. Nevertheless, the lack of carbon footprint tools for hardware accelerators
prevents researchers from analyzing the behavior of the hardware and AI models in the development and deployment processes.

Current tools use performance counters to track the CPU, GPU, and memory activity. These counters measure the number of memory accesses, energy consumption, and execution time. Measurements are executed in real-time and have a negligible overhead on the runtime of the process and energy consumption. However, they are not compatible with simulation tools widely used for designing custom hardware. Simulation tools enable accurate and fast design space exploration before realizing the hardware design. Tracking carbon footprint in this stage is significant because, after the tape-out of the design, it is challenging to change the behavior of the hardware to adjust to the carbon footprint activity. Therefore, tracking custom hardware’s carbon footprint using simulators is critical for the environment and society.

In addition to tracking carbon footprints, it is essential to implement strategies for reducing them. Data centers, for example, strive to offset their operational carbon footprint by incorporating renewable energy sources. On the other hand, in the realm of ML models, several techniques have been employed to minimize resource and operational consumption. One such approach is model layer freezing, which aims to decrease memory usage and training time during ML model training by selectively freezing specific layers and excluding them from the backpropagation process. This technique helps conserve resources and optimize the training process. However, its impact on the carbon footprint is overlooked.

We propose integrating a carbon footprint tracker with an in-memory comput-
Figure 6.1: Overview of the proposed framework. Inputs to the framework are the target network, target architecture, dataset, and location. First, the training or inference part is performed in the Python wrapper using the PyTorch library. This wrapper outputs the accuracy based on the quantization. Then, quantized weights, activations, and gradients are sent to the IMC simulator. This simulator outputs latency and TOPS. Then, energy consumption and location information are used by the carbon footprint tracker for each epoch, outputting the carbon footprint.

This simulator tracks the custom hardware’s carbon footprint and electricity consumption for training and inference of machine learning models. Using this tool, the hardware designers can analyze the carbon footprint performance of the custom hardware in the early design stage by varying the hardware configuration. On top of carbon footprint, our tool also provides other hardware metrics like latency, energy consumption, TOPS, and area that helps the design of the hardware. Furthermore, we integrate various AI models for sustainability analyses of different aspects of machine learning algorithms. Machine learning model developers can analyze the training and inference behavior of the AI models they develop and try to reduce the design’s carbon footprint for deployment. We evaluate the platform for popular CNN models regarding carbon footprint with various metrics like quantization, hardware parameters, and layer freezing to show that designing sustainable and robust AI
models with energy-efficient machine-learning accelerators is possible. Moreover, we propose a carbon footprint optimization algorithm that utilizes a characterization procedure that shows the network behavior for various freezing scenarios. This characterization procedure constitutes the algorithm’s backbone and guides the algorithm’s search. The operation of the optimization framework can be summarized in the following steps. First, we perform trial training runs where we freeze particular layers at specific epochs, considering the vast design space. Second, we fit curves to interpolate the freezing data for epochs where information is missing, completing the overall understanding. Third, we provide the data obtained from the characterization process to the algorithm, which explores the design space to identify the optimal freezing epochs that minimize carbon footprint while maintaining negligible accuracy loss. Furthermore, we discussed the potential ways to minimize the carbon footprint of custom hardware.
7 OTHER WORK: DAS: DYNAMIC ADAPTIVE SCHEDULING FOR ENERGY-EFFICIENT HETEROGENEOUS SOCS

7.1 Dynamic Adaptive Scheduling Framework

7.1.1 Overview and Preliminaries

This work considers streaming applications that can be modeled by a data flow graph (DFG). Consecutive data frames are pipelined through the tasks in the graph. Unlike the current practice, which is limited to a single scheduler, DAS allows the OS to choose one scheduling policy \(\pi \in \Pi_S = \{F, S\} \), where \(F \) and \(S \) refer to the fast and slow schedulers, respectively. Once the predecessors of a task are completed, the OS can call either a fast \((\pi = F) \) or a slow scheduler \((\pi = S) \) as a function of the system state and workload. The OS collects a set of performance counters during the workload execution to enable two aspects for the DAS framework: (1) precise assessment of the system state, (2) desirable features for the classifier to dynamically switch between the fast and slow schedulers.

<table>
<thead>
<tr>
<th>Type</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Task ID, Execution time, Power consumption, Depth of task in DFG,</td>
</tr>
<tr>
<td></td>
<td>Application ID, Predecessor task ID and cluster IDs, Application type</td>
</tr>
<tr>
<td>Processing</td>
<td>Earliest time when PE is ready to execute,</td>
</tr>
<tr>
<td>Element</td>
<td>Earliest availability time of each cluster, PE utilization, Communication cost</td>
</tr>
<tr>
<td>(PE)</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>Input data rate</td>
</tr>
</tbody>
</table>
Table 7.1 presents the performance counters collected by DAS. For a DSSoC with 19 PEs, it uses 62 counters. The goal of the fast scheduler F is to approach the theoretically minimum (i.e., zero) scheduling overhead by making decisions in a few cycles with a minimum number of operations. In contrast, the slow scheduler S aims to handle more complex scenarios when the task wait times dominate the execution times. *The goal of DAS is to outperform both underlying schedulers in terms of execution time and EDP by dynamically switching between them as a function of system state and workload.*

7.1.2 Zero-Delay DAS Preselection Classifier

The first step of DAS is selecting the fast or slow scheduler. Since this decision is on the critical path of the fast scheduler, we must optimize it to approach our zero overhead goal. One of the novel contributions of DAS is recognizing this selection as a deterministic task that will eventually be executed with probability one. Hence, we prefetch the relevant features required for this decision to a pre-allocated local register. To minimize the overhead, we re-use a subset of counters shown in Table 7.1 to make this decision, discussed in Section 7.2.2.

The OS periodically refreshes the performance counters to reflect the current system state. Each time the features are refreshed, DAS preselection classifier updates its scheduler selection which will be used for the next ready task. This decision will always be up to date since it uses the features that reflect the most recent system state. This way, DAS determines which scheduler should be called even before a task is ready for scheduling. Hence, the preselection classifier introduces zero
latency and minimal energy overhead, as described next.

Offline Classifier Design: The first step to design the pre-selection classifier is generating the training data based on the domain applications known at design time. Each scenario in the training data consists of concurrent applications and their respective data rates (e.g., a combination of WiFi transmitter and receiver chains, at a specific upload and download speed). To this end, we run each scenario twice, as described in Fig. 7.1.

First Execution: The instrumentation enables us to run both fast and slow schedulers each time a task scheduling decision is made. If the decisions of the fast \((D_F) \) and slow \((D_S) \) schedulers for a task \(T_i \) are identical, then we label task \(T_i \) with \(F \) (i.e., the fast scheduler) and store the recent performance counters. If the schedulers return different decisions, then the label is left as pending, and the execution continues by

![Flowchart](image)

Figure 7.1: Flowchart describing the flow of the DAS framework: Oracle generation, feature selection, and training a model for the classifier.
following D_F, as shown in Fig. 7.1. At the end, the training data contains a mixture of both labeled (F) and pending decisions.

Second Execution: The same scenario is executed, this time by always following D_S. At the end, we analyze the target metric, such as the execution time. If the slow scheduler achieves a better result, the pending labels are replaced with S to indicate that the slow scheduler is preferred despite its larger overhead. Otherwise, we conclude that the fast scheduler’s lower overhead pays off and replace the pending labels with F. An alternative approach is evaluating each pending label individually. However, this approach will not be scalable since the decision at time t_k affects the remaining execution.

We generate training data using these two runs as described in Section 7.2.1. Then, we design a low-overhead classifier using machine learning and feature selection techniques to select the fast or slow scheduler at runtime, as shown in Fig. 7.1.

Online Use of the Classifier: At runtime, a background process periodically updates a preallocated local memory with a small subset of performance counters required by the classifier. After each update, the classifier determines whether the fast F or slow S scheduler should be used for the next available task. When a new ready task becomes available, we know which scheduler is a better choice. Therefore, DAS does not incur any extra delay on the critical path. Moreover, it has a negligible energy overhead, as demonstrated in Section 7.2.
7.1.3 Fast & Slow (Sophisticated) (F&S) Schedulers

The DAS framework can work with any choice of fast and slow scheduling algorithms. This work uses a LUT implementation as the fast scheduler since the goal of the fast scheduler is to achieve almost zero overhead. The LUT stores the most energy-efficient processor in the system for each known task in the target domain. Unknown tasks are mapped to the next available CPU core. Hence, the only extra delay on the critical path and overhead is the LUT access. To profile the overhead, we developed an implementation using C with inline assembly code. Experiments show that our fast scheduler takes \(\sim 7.2 \) cycles (6 ns on Arm Cortex-A53 at 1.2 GHz) on average and incurs negligible (2.3 nJ) energy overhead.

This work uses a commonly used heuristic, earliest task first (ETF), as the slow scheduler [84]. ETF is chosen since it performs a comprehensive search to make a decision when the SoC is loaded with many tasks. It recursively iterates over the ready tasks and processors to find the schedule with the fastest finish time, as shown in Algorithm 4. Hence, its computational complexity is quadratic on the

Algorithm 4 ETF Scheduler

1: \textbf{while} ready queue \(\mathcal{T} \) is not empty \textbf{do}
2: \hspace{1em} \textbf{for} task \(T_i \in \mathcal{T} \) \textbf{do}
3: \hspace{2em} \textbf{//} \(\mathcal{P} = \text{set of PEs} \)
4: \hspace{2em} \textbf{for} PE \(p_j \in \mathcal{P} \) \textbf{do}
5: \hspace{3em} \(FT_{T_i,p_j} \) = Compute the finish time of \(T_i \) on \(p_j \)
6: \hspace{2em} \textbf{end for}
7: \hspace{1em} \textbf{end for}
8: \((T', p') = \text{Find the task \& PE pair that has the minimum} \ FT \)
9: \hspace{1em} \text{Assign task} \(T' \) \text{ to PE} \(p' \)
10: \textbf{end while}
number of ready tasks.

7.2 Experimental Evaluations

7.2.1 Experimental Setup

Domain Applications: The DAS framework is evaluated using five real-world streaming applications: 1) range detection; 2) temporal mitigation; 3) WiFi-transmitter; 4) WiFi-receiver applications; and 5) a proprietary industrial application (App-1) [84, 85]. We construct 40 different workloads by mixing applications in different ratios for our evaluations. More information is provided in our GitHub [84].

Emulation Environment: One of our key goals in this study is to conduct a realistic energy and runtime overhead analysis. For this purpose, we leverage an open-source Linux-based emulation framework [85]. For our analysis, we incorporate LUT and ETF schedulers into this emulation environment. We generate a wide range of workloads – ranging from all application instances belonging to a single application to a uniform distribution from all five applications. We measure the trend between the number of ready tasks and the scheduling overhead of ETF on the Xilinx Zynq ZCU102. Based on these measurements, we formulate the ETF scheduling overhead using a quadratic equation to evaluate the DAS scheduler.

Simulation Environment: We use DS3 [84], an open-source DSSoC simulation framework, for the detailed evaluation of DAS. DS3 includes built-in scheduling algorithms, models for PEs, interconnect, and memory systems. The framework has been validated with Xilinx Zynq ZCU102 and Odroid-XU3.
Figure 7.2: Comparison of (a)–(c) average execution time and (d)–(f) EDP between DAS, LUT, ETF, and ETF-ideal for three different workloads.

DSSoC Configuration: We construct a DSSoC configuration that comprises clusters of general-purpose cores and hardware accelerators. The application domains used in this study are wireless communications and radar systems. The DSSoC used in our experiments uses the Arm big.LITTLE architecture with 4 cores each. We also include dedicated accelerators for fast Fourier transform (FFT), forward error correction (FEC), finite impulse response (FIR), and a systolic array processor (SAP). We include 4 cores each for the FFT and FIR accelerators, one core for the FEC, and two cores of the SAP. In total, the DSSoC integrates 19 PEs with a mesh-based network-on-chip to enable efficient on-chip data movement.

7.2.2 Exploration of ML Techniques and Feature Space for DAS

Machine Learning Technique Exploration: We explore different classifiers to co-optimize the classification accuracy and model size towards our minimal overhead
Figure 7.3: Decisions taken by the DAS framework as bar plots and total scheduling energy overheads of LUT, ETF, and DAS as line plots.

good. Specifically, we investigated support vector classifiers (SVC), decision tree (DT), multi-layer perceptron (MLP), and logistic regression (LR). The training process with SVCs exceeded 24 h, rendering it infeasible. The latency and storage requirements of the MLP (one hidden layer and 16 neurons) did not fit the low-overhead requirements. Therefore, these two techniques are excluded from the rest of the analysis. Table 7.2 summarizes the classification accuracy and storage overheads for the LR and DTs as a function of the number of features. DTs achieve similar or higher accuracies compared to LR classifiers with lower storage overheads. While a DT with depth 16 achieves the best accuracy, there is a significant impact on the storage overhead, which influences the latency and energy consumption of the classifier. In comparison, DTs with depth 2 and 4 have negligible storage overheads with competitive accuracies (>85%). Hence, we adopt the DT with depth 2.
Feature Space Exploration: We collect 62 performance counters in our training. A systematic feature space exploration is performed using feature selection and importance methods. Growing the list from a single feature (input data rate) to two features with the addition of the earliest availability time of the Arm big cluster increases the accuracy from 63.66% to 85.48%. The data rate is tracked at runtime by an 8-entry \times 16-bit shift register. Therefore, we utilize only two most important features for a DT of depth 2 for the DAS classifier; this takes 13 ns on Arm Cortex-A53 cores at 1.2 GHz.

7.2.3 Performance and Scheduling Overhead Analysis

This section compares the DAS framework with LUT (fast), ETF (slow), and ETF-ideal schedulers. ETF-ideal is a version of the ETF scheduler which ignores the scheduling overhead. It helps us establish the theoretical limit of achievable execution time and EDP. Out of the 40 workloads described in Section 7.1.2, we choose three representative workloads for a detailed analysis of execution time and EDP. These workloads present different data rates. Workload-1 [Fig. 7.2(a) and (d)],

Table 7.2: Classification accuracies and storage overhead of DAS models with different machine learning classifiers and features

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Tree Depth</th>
<th>Number of Features</th>
<th>Classification Accuracy (%)</th>
<th>Storage (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>-</td>
<td>2</td>
<td>79.23</td>
<td>0.01</td>
</tr>
<tr>
<td>LR</td>
<td>-</td>
<td>62</td>
<td>83.1</td>
<td>0.24</td>
</tr>
<tr>
<td>DT</td>
<td>2</td>
<td>1</td>
<td>63.66</td>
<td>0.01</td>
</tr>
<tr>
<td>DT</td>
<td>2</td>
<td>2</td>
<td>85.48</td>
<td>0.01</td>
</tr>
<tr>
<td>DT</td>
<td>4</td>
<td>6</td>
<td>85.51</td>
<td>0.03</td>
</tr>
<tr>
<td>DT</td>
<td>16</td>
<td>62</td>
<td>91.65</td>
<td>256</td>
</tr>
</tbody>
</table>
workload-2 [Fig. 7.2(b) and (e)] and workload-3 [Fig. 7.2(c) and (f)] represent low, moderate, and high data rate, respectively.

Fig. 7.2(a)–(c) [Fig. 7.2(d)–(f)] compare the execution times (EDP) of DAS, LUT, ETF, and ETF-ideal. For workloads 1 and 2, the SoC is not congested at low data rates. Hence, DAS performs similar to LUT. As data rates increase, DAS aptly chooses between LUT and ETF at runtime. Its execution time and EDP is 14% and 15% lower than LUT, and 15% and 42% lower than ETF. For workload-3, the execution time and EDP of ETF are significantly higher than LUT. DAS chooses LUT for >99% of the decisions and closely follows its trend.

This study is extended to all 40 workloads. At low data rates, DAS achieves $1.29 \times$ speedup and 45% lower EDP than ETF, and $1.28 \times$ speedup and 37% lower EDP than LUT, when the complexity increases. In summary, DAS consistently performs better than both of the underlying schedulers, successfully adapts to the workloads at runtime, and aptly chooses between LUT and ETF to achieve low execution time and EDP.

The left axis of Fig. 7.3 plots the decision distribution of DAS. It uses LUT for all decisions at the lowest data rate and ETF for 95% of decisions at the highest data rate. At a moderate workload of 1352 Mb/s, DAS still uses LUT for 96% of the decisions. The right axis of Fig. 7.3 shows the energy overhead of different schedulers. As DAS uses LUT and ETF based on the system load, its energy overhead varies from that of LUT to ETF. The average scheduling latency overhead of DAS under heavy workloads is 65 ns, and the energy overhead is 27.2 nJ.

We also compared DAS against a heuristic that chooses the fast scheduler when
the data rate is less than a predetermined threshold and uses the slow scheduler otherwise. The threshold is chosen judiciously by analyzing the training data used for DAS. Simulation results show that the heuristic closely follows LUT and ETF schedulers below and above the threshold, respectively. In contrast, DAS outperforms both schedulers and achieves 13% lower execution time than the heuristic.
8 CONCLUSIONS AND FUTURE DIRECTIONS

The slowdown of Moore’s Law has limited the power and performance gains obtained with the evolution of technology process nodes over the years. Beyond the conventional approaches to address this challenge, IMC architectures promise to achieve superior energy efficiency by combining the computation with the communication inside the memory, thus alleviating the data communication and von Neumann bottleneck. This preliminary report addressed several critical challenges in IMC design and development to fully exploit their potential for large-scale computing to edge computing. First, we developed a heterogeneous big little chiplet architecture for IMC machine learning accelerators that optimizes the DNN model inference with a novel mapping and an NoP configuration. To the best of our knowledge, this is the first heterogeneous chiplet-based IMC architecture that leverages different IMC compute structures coupled with a heterogeneous NoP. We show that mapping the early layers to the little chiplet bank and the subsequent layers to the big chiplet bank achieves up to $2.8 \times$ higher IMC utilization and up to $329 \times$ improvement in the energy-delay-area product compared to homogeneous chiplet IMC architectures. Experimental evaluation of the proposed big-little chiplet-based RRAM IMC architecture for ResNet-50 on ImageNet shows $18.4 \times$ energy-efficiency improvement compared to SOTA chiplet-based architecture SIMBA. Then, we developed an energy-efficient on-chip learning framework for personalized home-based rehabilitation systems. To the best of our knowledge, this is the first on-chip learning framework that targets rehabilitation systems that demands a personalized solution
for patients. The proposed framework significantly improves the mmWave-based human pose estimation model through real-time on-chip learning without sacrificing user privacy. Experimental evaluations show that the proposed framework achieves up to a 45.82% decrease in MPJPE and up to $14.0 \times$ speedup for training compared to an edge device.

In summary, this report addressed the following critical gaps in the design and development of IMCs by making the following contributions:

- A detailed and comprehensive literature review on IMC architectures for large-scale computing and edge computing,

- Big Little Chiplets, a heterogeneous big little chiplet architecture for IMC machine learning accelerators [28],

- An energy-efficient on-chip training framework for home-based rehabilitation systems [29],

- DAS, dynamic adaptive scheduling framework for heterogeneous SoCs [86].

8.0.1 **Future Directions**

Neural Network Optimization: Machine learning (ML) algorithms exhibit high communication volume, and the communication can alone contribute to a significant portion of total inference latency in IMC-based architectures. Sparse inter-layer connections can enable energy-efficient DNNs.
This report proposes to optimize neural networks using communication-aware sparse training and latency-aware mapping to alleviate the increasing contribution of communication to the total execution.

Carbon Footprint Optimization: Computational loads continue to grow exponentially, as evidenced by the growth in AI applications and training demands. Energy consumption and resource utilization surge led to high carbon footprints. Carbon footprint is directly proportional to energy consumption given a location and a source mix of energy. Therefore, there is a need for optimization of carbon footprint.

This report proposes to optimize the carbon footprint of architecture and the DNN model by applying layer freezing and quantization. For in-memory computing-based accelerators, integrating a carbon footprint tracker into an IMC simulator can enable designers to consider the carbon footprint during the development phase.
BIBLIOGRAPHY

[56] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing loop operation and dataflow in fpga acceleration of deep convolutional neural net-

